Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 56(92): 14479-14482, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33150344

ABSTRACT

The cross-dehydrogenative arylation of benzylic C-H bonds with arenes provides straightforward access to synthetically useful 1,1-diarylmethanes, from readily available starting materials. Current approaches suffer from limited substrate scope, requirement for large excesses of alkyl arene and/or non-trivial reaction set up. We report a transition metal-free cross-dehydrogenative arylation of benzylic C-H bonds using alkyl benzene derivatives and electron-rich arenes as coupling partners. The method proceeds through the in situ generation of a reactive benzyl fluoride intermediate which then reacts with the nucleophilic arene. The reaction tolerates a wide variety of functional groups including unprotected polar functionality and has been applied to the late-stage benzylation of several biologically relevant molecules.

2.
Adv Mater ; 32(45): e2003915, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33000880

ABSTRACT

Bioprinting has emerged as an advanced method for fabricating complex 3D tissues. Despite the tremendous potential of 3D bioprinting, there are several drawbacks of current bioinks and printing methodologies that limit  the ability to print elastic and highly vascularized tissues. In particular, fabrication of complex biomimetic structure that are entirely based on 3D bioprinting is still challenging primarily due to the lack of suitable bioinks with high printability, biocompatibility, biomimicry, and proper mechanical properties. To address these shortcomings, in this work the use of recombinant human tropoelastin as a highly biocompatible and elastic bioink for 3D printing of complex soft tissues is demonstrated. As proof of the concept, vascularized cardiac constructs are bioprinted and their functions are assessed in vitro and in vivo. The printed constructs demonstrate endothelium barrier function and spontaneous beating of cardiac muscle cells, which are important functions of cardiac tissue in vivo. Furthermore, the printed construct elicits minimal inflammatory responses, and is shown to be efficiently biodegraded in vivo when implanted subcutaneously in rats. Taken together, these results demonstrate the potential of the elastic bioink for printing 3D functional cardiac tissues, which can eventually be used for cardiac tissue replacement.


Subject(s)
Bioprinting/methods , Elastin , Printing, Three-Dimensional , Recombinant Proteins , Animals , Elasticity , Humans , Myocardium/cytology , Rats
3.
Chem Sci ; 11(16): 4204-4208, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-34122883

ABSTRACT

Over the last few decades C-H olefination has received significant interest, due to the importance and usefulness of aryl olefins both as synthetic targets and intermediates. While a wide range of ortho-olefination protocols have been developed, only a small number of meta-olefinations are currently available. Importantly, the most common approach to meta-olefination, using a large meta-directing template, is not suitable for substrates such as fluorobenzenes, which cannot be derivatised. We report that the meta-selective olefination of fluoroarenes can be achieved via the use of CO2 as a traceless directing group, which can be easily installed and removed in a one-pot process. Furthermore, this approach avoids the use of stoichiometric Ag(i)-salts, commonly used in C-H olefinations, and affords complete meta- over ortho/para-regioselectivity.

4.
ACS Appl Mater Interfaces ; 11(34): 30518-30533, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31373791

ABSTRACT

Bioprinting has gained significant attention for creating biomimetic tissue constructs with potential to be used in biomedical applications such as drug screening or regenerative medicine. Ideally, biomaterials used for three-dimensional (3D) bioprinting should match the mechanical, hydrostatic, bioelectric, and physicochemical properties of the native tissues. However, many materials with these tissue-like properties are not compatible with printing techniques without modifying their compositions. In addition, integration of cell-laden biomaterials with bioprinting methodologies that preserve their physicochemical properties remains a challenge. In this work, a biocompatible conductive hydrogel composed of gelatin methacryloyl (GelMA) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was synthesized and bioprinted to form complex, 3D cell-laden structures. The biofabricated conductive hydrogels were formed by an initial cross-linking step of the PEDOT:PSS with bivalent calcium ions and a secondary photopolymerization step with visible light to cross-link the GelMA component. These modifications enabled tuning the mechanical properties of the hydrogels, with Young's moduli ranging from ∼40-150 kPa, as well as tunable conductivity by varying the concentration of PEDOT:PSS. In addition, the hydrogels degraded in vivo with no substantial inflammatory responses as demonstrated by haematoxylin and eosin (H&E) and immunofluorescent staining of subcutaneously implanted samples in Wistar rats. The parameters for forming a slurry of microgel particles to support 3D bioprinting of the engineered cell-laden hydrogel were optimized to form constructs with improved resolution. High cytocompatibility and cell spreading were demonstrated in both wet-spinning and 3D bioprinting of cell-laden hydrogels with the new conductive hydrogel-based bioink and printing methodology. The synergy of an advanced fabrication method and conductive hydrogel presented here is promising for engineering complex conductive and cell-laden structures.


Subject(s)
Biocompatible Materials , Bioprinting , Electric Conductivity , Hydrogels , Materials Testing , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Mice , Rats , Rats, Wistar
5.
Biomaterials ; 198: 78-94, 2019 04.
Article in English | MEDLINE | ID: mdl-30201502

ABSTRACT

Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics.


Subject(s)
Bioengineering/instrumentation , Biomimetics/instrumentation , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/pathology , Drug Evaluation, Preclinical/instrumentation , Animals , Biocompatible Materials/chemistry , Bioengineering/methods , Biomimetics/methods , Cardiovascular Diseases/diagnosis , Drug Discovery/instrumentation , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Equipment Design , Humans , Lab-On-A-Chip Devices
6.
Chem Sci ; 9(35): 7133-7137, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30310635

ABSTRACT

While several methods for the ortho selective arylation of fluoroarenes, meta-functionalisation has never been achieved. We report a new methodology, based on the traceless directing group relay concept, leading to the first meta-selective (hetero)arylation of fluoroarenes. In this strategy, CO2 is introduced as a transient directing group, to control a Pd-catalysed arylation meta to the fluoro functionality, prior to its release in a sequential, one-pot fashion. This method has shown compatibility with a number of functional groups and substitution patterns in both the fluoroarene core and aryl iodide coupling partners, and proceeds with complete meta-selectivity and mono vs. bis-arylation selectivity.

7.
ACS Biomater Sci Eng ; 4(5): 1558-1567, 2018 May 14.
Article in English | MEDLINE | ID: mdl-33445313

ABSTRACT

Electroconductive hydrogels are used in a wide range of biomedical applications, including electrodes for patient monitoring and electrotherapy, or as biosensors and electrochemical actuators. Approaches to design electroconductive hydrogels are often met with low biocompatibility and biodegradability, limiting their potential applications as biomaterials. In this study, composite hydrogels were prepared from a conducting polymer complex, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) dispersed within a photo-crosslinkable naturally derived hydrogel, gelatin methacryloyl (GelMA). To determine the impact of PEDOT:PSS loading on physical and microstructural properties and cellular responses, the electrical and mechanical properties, electrical properties, and biocompatibility of hydrogels loaded with 0-0.3% (w/v) PEDOT:PSS were evaluated and compared to GelMA control. Our results indicated that the properties of the hydrogels, such as mechanics, degradation, and swelling, could be tuned by changing the concentration of PEDOT:PSS. In particular, the impedance of hydrogels decreased from 449.0 kOhm for control GelMA to 281.2 and 261.0 kOhm for hydrogels containing 0.1% (w/v) and 0.3% (w/v) PEDOT:PSS at 1 Hz frequency, respectively. In addition, an ex vivo experiment demonstrated that the threshold voltage to stimulate contraction in explanted abdominal tissue connected by the composite hydrogels decreased from 9.3 ± 1.2 V for GelMA to 6.7 ± 1.5 V and 4.0 ± 1.0 V for hydrogels containing 0.1% (w/v) and 0.3% (w/v) PEDOT:PSS, respectively. In vitro studies showed that composite hydrogels containing 0.1% (w/v) PEDOT:PSS supported the viability and spreading of C2C12 myoblasts, comparable to GelMA controls. These results indicate the potential of our composite hydrogel as an electroconductive biomaterial.

SELECTION OF CITATIONS
SEARCH DETAIL
...