Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17577, 2024.
Article in English | MEDLINE | ID: mdl-38938602

ABSTRACT

Background: Enhancing detection of cryptic snakes is critical for the development of conservation and management strategies; yet, finding methods that provide adequate detection remains challenging. Issues with detecting snakes can be particularly problematic for some species, like the invasive Burmese python (Python bivittatus) in the Florida Everglades. Methods: Using multiple survey methods, we predicted that our ability to detect pythons, larger snakes and all other snakes would be enhanced with the use of live mammalian lures (domesticated rabbits; Oryctolagus cuniculus). Specifically, we used visual surveys, python detection dogs, and time-lapse game cameras to determine if domesticated rabbits were an effective lure. Results: Time-lapse game cameras detected almost 40 times more snakes (n = 375, treatment = 245, control = 130) than visual surveys (n = 10). We recorded 21 independent detections of pythons at treatment pens (with lures) and one detection at a control pen (without lures). In addition, we found larger snakes, and all other snakes were 165% and 74% more likely to be detected at treatment pens compared to control pens, respectively. Time-lapse cameras detected almost 40 times more snakes than visual surveys; we did not detect any pythons with python detection dogs. Conclusions: Our study presents compelling evidence that the detection of snakes is improved by coupling live mammalian lures with time-lapse game cameras. Although the identification of smaller snake species was limited, this was due to pixel resolution, which could be improved by changing the camera focal length. For larger snakes with individually distinctive patterns, this method could potentially be used to identify unique individuals and thus allow researchers to estimate population dynamics.


Subject(s)
Boidae , Snakes , Time-Lapse Imaging , Animals , Rabbits , Time-Lapse Imaging/methods , Florida , Dogs , Photography/instrumentation , Photography/methods , Predatory Behavior/physiology
2.
J Comp Physiol B ; 190(3): 329-339, 2020 05.
Article in English | MEDLINE | ID: mdl-32112179

ABSTRACT

Variation in animal responses to feeding can be attributed to a variety of ecological factors, including foraging mode and dietary specialization. Specialization often favors species that have traits for exploiting food resources that are rare and that are not commonly shared by dietary generalists. We investigated physiological and behavioral responses to feeding between two snake species with different degrees of mammal feeding specialization: Agkistrodon contortrix (copperheads; a terrestrial species in which adults feed almost exclusively on mammals) and Agkistrodon piscivorus (cottonmouths; a semi-aquatic species feeding less on mammals and primarily on ectothermic prey). We measured metabolic rates (at 20, 25, and 30 °C) and body temperature (Tb) selection of snakes both pre- and post-feeding. Following the consumption of rodent meals, post-feeding energy use was higher in A. piscivorus than A. contortrix at both 25 and 30 °C. After feeding, A. piscivorus maintained body temperatures that were 3-4 °C higher, whereas A. contortrix remained within 1 °C of their pre-feeding Tb. Our results support the contention that dietary specialization leads to potential energetic advantages and that generalist species may change their behavior to offset energy used to digest prey.


Subject(s)
Agkistrodon/physiology , Animals , Body Temperature , Diet , Ecosystem , Energy Metabolism , Feeding Behavior , Oxygen Consumption , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...