Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychologia ; 106: 71-82, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28893526

ABSTRACT

The ability to temporarily maintain relevant information in mind in the presence of interference or distracting information, also called working memory (WM), is critical for higher cognitive functions and cognitive development. In typically developing (TD) children, WM is underpinned by a fronto-parietal network of interacting left and right brain regions. Developmental absence (agenesis) of the corpus callosum (AgCC) is a congenital brain malformation resulting from disruption of corpus callosum formation. This study aims to investigate functional organisation of WM in children and adolescents with AgCC using functional magnetic resonance imaging (fMRI). Nine children with AgCC and a comparison group of sixteen TD children aged 8-17 years completed an fMRI WM paradigm designed to enable investigation of different WM processes, i.e., encoding, maintenance and retrieval. We found that AgCC children recruited globally similar brain regions as the TD comparison group during the WM task, despite significant disparity in brain development, i.e., bilateral occipito-frontal activations during verbal encoding, and bilateral fronto-parietal executive control network during retrieval. However, compared to their TD peers, children with AgCC seemed less able to engage lateralised brain systems specialised for particular memory material (i.e. less supramarginal activations for verbal material and less fusiform activations for face processing) and particular memory process (i.e. absence of right-predominant activations during retrieval). Group differences in the pattern of activation might also reflect different cognitive strategies to cope with competition in processing resources with different susceptibility to concurrent tasks (verbal vs visual), such as differential recruitment of associative visual areas and executive prefrontal regions in the AgCC compared with the TD group depending on the concurrent task completed during maintenance. This study provides a first step towards a better understanding of functional brain networks underlying higher cognitive functions in children with AgCC.


Subject(s)
Agenesis of Corpus Callosum/complications , Agenesis of Corpus Callosum/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Adolescent , Child , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Male , Movement , Oxygen/blood , Statistics, Nonparametric , Time Factors , Verbal Learning
2.
Dev Cogn Neurosci ; 9: 106-16, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24631800

ABSTRACT

Working memory is crucial for meeting the challenges of daily life and performing academic tasks, such as reading or arithmetic. Very preterm born children are at risk of low working memory capacity. The aim of this study was to examine the visuospatial working memory network of school-aged preterm children and to determine the effect of age and performance on the neural working memory network. Working memory was assessed in 41 very preterm born children and 36 term born controls (aged 7-12 years) using functional magnetic resonance imaging (fMRI) and neuropsychological assessment. While preterm children and controls showed equal working memory performance, preterm children showed less involvement of the right middle frontal gyrus, but higher fMRI activation in superior frontal regions than controls. The younger and low-performing preterm children presented an atypical working memory network whereas the older high-performing preterm children recruited a working memory network similar to the controls. Results suggest that younger and low-performing preterm children show signs of less neural efficiency in frontal brain areas. With increasing age and performance, compensational mechanisms seem to occur, so that in preterm children, the typical visuospatial working memory network is established by the age of 12 years.


Subject(s)
Aging/physiology , Infant, Extremely Premature/physiology , Infant, Extremely Premature/psychology , Memory, Short-Term/physiology , Age Factors , Brain Mapping , Child , Female , Frontal Lobe/physiology , Humans , Infant, Newborn , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...