Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 9: 965316, 2022.
Article in English | MEDLINE | ID: mdl-36311661

ABSTRACT

Mice with severe combined immunodeficiency are commonly used as hosts of human cells. Size, longevity, and physiology, however, limit the extent to which immunodeficient mice can model human systems. To address these limitations, we generated RAG2 -/- IL2RG y/- immunodeficient pigs and demonstrate successful engraftment of SLA mismatched allogeneic D42 fetal liver cells, tagged with pH2B-eGFP, and human CD34+ hematopoietic stem cells after in utero cell transplantation. Following intrauterine injection at day 42-45 of gestation, fetuses were allowed to gestate to term and analyzed postnatally for the presence of pig (allogeneic) and human (xenogeneic) B cells, T-cells and NK cells in peripheral blood and other lymphoid tissues. Engraftment of allogeneic hematopoietic cells was detected based on co-expression of pH2B-eGFP and various markers of differentiation. Analysis of spleen revealed robust generation and engraftment of pH2B-eGFP mature B cells (and IgH recombination) and mature T-cells (and TCR-ß recombination), T helper (CD3+CD4+) and T cytotoxic (CD3+CD8+) cells. The thymus revealed engraftment of pH2B-eGFP double negative precursors (CD4-CD8-) as well as double positive (CD4+, CD8+) precursors and single positive T-cells. After intrauterine administration of human CD34+ hematopoietic stem cells, analysis of peripheral blood and lymphoid tissues revealed the presence of human T-cells (CD3+CD4+ and CD3+CD8+) but no detectable B cells or NK cells. The frequency of human CD45+ cells in the circulation decreased rapidly and were undetectable within 2 weeks of age. The frequency of human CD45+ cells in the spleen also decreased rapidly, becoming undetectable at 3 weeks. In contrast, human CD45+CD3+ T-cells comprised >70% of cells in the pig thymus at birth and persisted at the same frequency at 3 weeks. Most human CD3+ cells in the pig's thymus expressed CD4 or CD8, but few cells were double positive (CD4+ CD8+). In addition, human CD3+ cells in the pig thymus contained human T-cell excision circles (TREC), suggesting de novo development. Our data shows that the pig thymus provides a microenvironment conducive to engraftment, survival and development of human T-cells and provide evidence that the developing T-cell compartment can be populated to a significant extent by human cells in large animals.

2.
J Immunol ; 207(10): 2445-2455, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34654689

ABSTRACT

Preterm labor (PTL) is the leading cause of neonatal morbidity and mortality worldwide. Whereas many studies have investigated the maternal immune responses that cause PTL, fetal immune cell activation has recently been raised as an important contributor to the pathogenesis of PTL. In this study, we analyzed lymphocyte receptor repertoires in maternal and cord blood from 14 term and 10 preterm deliveries, hypothesizing that the high prevalence of infection in patients with PTL may result in specific changes in the T cell and B cell repertoires. We analyzed TCR ß-chain (TCR-ß) and IgH diversity, CDR3 lengths, clonal sharing, and preferential usage of variable and joining gene segments. Both TCR-ß and IgH repertoires had shorter CDR3s compared with those in maternal blood. In cord blood samples, we found that CDR3 lengths correlated with gestational age, with shorter CDR3s in preterm neonates suggesting a less developed repertoire. Preterm cord blood displayed preferential usage of a number of genes. In preterm pregnancies, we observed significantly higher prevalence of convergent clones between mother/baby pairs than in term pregnancies. Together, our results suggest the repertoire of preterm infants displays a combination of immature features and convergence with maternal TCR-ß clones compared with that of term infants. The higher clonal convergence in PTL could represent mother and fetus both responding to a shared stimulus like an infection. These data provide a detailed analysis of the maternal-fetal immune repertoire in term and preterm patients and contribute to a better understanding of neonate immune repertoire development and potential changes associated with PTL.


Subject(s)
Immunoglobulin Heavy Chains/immunology , Infant, Newborn/immunology , Obstetric Labor, Premature/immunology , Premature Birth/immunology , Receptors, Antigen, T-Cell/immunology , Complementarity Determining Regions/immunology , Female , Humans , Infant, Premature/immunology , Pregnancy
3.
Sci Transl Med ; 12(532)2020 02 26.
Article in English | MEDLINE | ID: mdl-32102934

ABSTRACT

Mucopolysaccharidosis type VII (MPS7) is a lysosomal storage disorder (LSD) resulting from mutations in the ß-glucuronidase gene, leading to multiorgan dysfunction and fetal demise. While postnatal enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation have resulted in some phenotypic improvements, prenatal treatment might take advantage of a unique developmental window to penetrate the blood-brain barrier or induce tolerance to the missing protein, addressing two important shortcomings of postnatal therapy for multiple LSDs. We performed in utero ERT (IUERT) at E14.5 in MPS7 mice and improved survival of affected mice to birth. IUERT penetrated brain microglia, whereas postnatal administration did not, and neurological testing (after IUERT plus postnatal administration) showed decreased microglial inflammation and improved grip strength in treated mice. IUERT prevented antienzyme antibody development even after multiple repeated postnatal challenges. To test a more durable treatment strategy, we performed in utero hematopoietic stem cell transplantation (IUHCT) using congenic CX3C chemokine receptor 1-green fluorescent protein (CX3CR1-GFP) mice as donors, such that donor-derived microglia are identified by GFP expression. In wild-type recipients, hematopoietic chimerism resulted in microglial engraftment throughout the brain without irradiation or conditioning; the transcriptomes of donor and host microglia were similar. IUHCT in MPS7 mice enabled cross-correction of liver Kupffer cells and improved phenotype in multiple tissues. Engrafted microglia were seen in chimeric mice, with decreased inflammation near donor microglia. These results suggest that fetal therapy with IUERT and/or IUHCT could overcome the shortcomings of current treatment strategies to improve phenotype in MPS7 and other LSDs.


Subject(s)
Fetal Therapies , Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis VII , Animals , Female , Immune Tolerance , Mice , Microglia , Mucopolysaccharidosis VII/therapy , Pregnancy
4.
Proc Natl Acad Sci U S A ; 115(21): 5420-5425, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29735702

ABSTRACT

Expression of HMGA2 is strongly associated with body size and growth in mice and humans. In mice, inactivation of one or both alleles of Hmga2 results in body-size reductions of 20% and 60%, respectively. In humans, microdeletions involving the HMGA2 locus result in short stature, suggesting the function of the HMGA2 protein is conserved among mammals. To test this hypothesis, we generated HMGA2-deficient pigs via gene editing and somatic cell nuclear transfer (SCNT). Examination of growth parameters revealed that HMGA2-/+ male and female pigs were on average 20% lighter and smaller than HMGA2+/+ matched controls (P < 0.05). HMGA2-/- boars showed significant size reduction ranging from 35 to 85% of controls depending on age (P < 0.05), and organ weights were also affected (P < 0.05). HMGA2-/+ gilts and boars exhibited normal reproductive development and fertility, while HMGA2-/- boars were sterile due to undescended testes (cryptorchidism). Crossbreeding HMGA2-/+ boars and gilts produced litters lacking the HMGA2-/- genotype. However, analysis of day (D) D40 and D78 pregnancies indicated that HMGA2-/- fetuses were present at the expected Mendelian ratio, but placental abnormalities were seen in the D78 HMGA2-/- concepti. Additionally, HMGA2-/- embryos generated by gene editing and SCNT produced multiple pregnancies and viable offspring, indicating that lack of HMGA2 is not lethal per se. Overall, our results show that the effect of HMGA2 with respect to growth regulation is highly conserved among mammals and opens up the possibility of regulating body and organ size in a variety of mammalian species including food and companion animals.


Subject(s)
Cryptorchidism/etiology , Dwarfism/etiology , Fetal Diseases/etiology , HMGA2 Protein/deficiency , Swine Diseases/etiology , Animals , Cryptorchidism/pathology , Dwarfism/pathology , Female , Fetal Diseases/pathology , Genotype , HMGA2 Protein/genetics , Litter Size , Male , Nuclear Transfer Techniques/veterinary , Pregnancy , Reproduction , Swine , Swine Diseases/pathology
5.
PLoS One ; 12(1): e0169242, 2017.
Article in English | MEDLINE | ID: mdl-28081156

ABSTRACT

Transgenic pigs have become an attractive research model in the field of translational research, regenerative medicine, and stem cell therapy due to their anatomic, genetic and physiological similarities with humans. The development of fluorescent proteins as molecular tags has allowed investigators to track cell migration and engraftment levels after transplantation. Here we describe the development of two transgenic pig models via SCNT expressing a fusion protein composed of eGFP and porcine Histone 2B (pH2B). This fusion protein is targeted to the nucleosomes resulting a nuclear/chromatin eGFP signal. The first model (I) was generated via random insertion of pH2B-eGFP driven by the CAG promoter (chicken beta actin promoter and rabbit Globin poly A; pCAG-pH2B-eGFP) and protected by human interferon-ß matrix attachment regions (MARs). Despite the consistent, high, and ubiquitous expression of the fusion protein pH2B-eGFP in all tissues analyzed, two independently generated Model I transgenic lines developed neurodegenerative symptoms including Wallerian degeneration between 3-5 months of age, requiring euthanasia. A second transgenic model (II) was developed via CRISPR-Cas9 mediated homology-directed repair (HDR) of IRES-pH2B-eGFP into the endogenous ß-actin (ACTB) locus. Model II transgenic animals showed ubiquitous expression of pH2B-eGFP on all tissues analyzed. Unlike the pCAG-pH2B-eGFP/MAR line, all Model II animals were healthy and multiple pregnancies have been established with progeny showing the expected Mendelian ratio for the transmission of the pH2B-eGFP. Expression of pH2B-eGFP was used to examine the timing of the maternal to zygotic transition after IVF, and to examine chromosome segregation of SCNT embryos. To our knowledge this is the first viable transgenic pig model with chromatin-associated eGFP allowing both cell tracking and the study of chromatin dynamics in a large animal model.


Subject(s)
Cell Tracking/methods , Green Fluorescent Proteins , Histones , Organisms, Genetically Modified , Recombinant Fusion Proteins , Swine , Animals , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Female , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Histones/biosynthesis , Histones/genetics , Male , Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Swine/genetics , Swine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...