Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet C Semin Med Genet ; 157C(1): 54-62, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21308987

ABSTRACT

Lysinuric protein intolerance (LPI) is an inherited aminoaciduria caused by defective cationic amino acid transport at the basolateral membrane of epithelial cells in intestine and kidney. LPI is caused by mutations in the SLC7A7 gene, which encodes the y(+)LAT-1 protein, the catalytic light chain subunit of a complex belonging to the heterodimeric amino acid transporter family. LPI was initially described in Finland, but has worldwide distribution. Typically, symptoms begin after weaning with refusal of feeding, vomiting, and consequent failure to thrive. Hepatosplenomegaly, hematological anomalies, neurological involvement, including hyperammonemic coma are recurrent clinical features. Two major complications, pulmonary alveolar proteinosis and renal disease are increasingly observed in LPI patients. There is extreme variability in the clinical presentation even within individual families, frequently leading to misdiagnosis or delayed diagnosis. This condition is diagnosed by urine amino acids, showing markedly elevated excretion of lysine and other dibasic amino acids despite low plasma levels of lysine, ornithine, and arginine. The biochemical diagnosis can be uncertain, requiring confirmation by DNA testing. So far, approximately 50 different mutations have been identified in the SLC7A7 gene in a group of 142 patients from 110 independent families. No genotype-phenotype correlation could be established. Therapy requires a low protein diet, low-dose citrulline supplementation, nitrogen-scavenging compounds to prevent hyperammonemia, lysine, and carnitine supplements. Supportive therapy is available for most complications with bronchoalveolar lavage being necessary for alveolar proteinosis.


Subject(s)
Kidney/metabolism , Lysine/urine , Renal Aminoacidurias/genetics , Renal Aminoacidurias/metabolism , Amino Acid Transport System y+L , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Epithelial Cells/metabolism , Finland , Fusion Regulatory Protein 1, Light Chains/genetics , Fusion Regulatory Protein 1, Light Chains/metabolism , Genetic Association Studies , Humans , Intestinal Mucosa/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Mutation , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/metabolism , Renal Aminoacidurias/diagnosis , Renal Aminoacidurias/diet therapy
2.
Eur J Hum Genet ; 13(5): 628-34, 2005 May.
Article in English | MEDLINE | ID: mdl-15756301

ABSTRACT

Lysinuric protein intolerance (LPI) is an inherited aminoaciduria caused by defective cationic amino acid (CAA) transport at the basolateral membrane of epithelial cells in the intestine and kidney. The SLC7A7 gene, mutated in LPI, encodes the y(+)LAT-1 protein, which is the light subunit of the heterodimeric CAA transporter in which 4F2hc is the heavy chain subunit. Co-expression of 4F2hc and y(+)LAT-1 induces the y(+)L activity. This activity is also exerted by another complex composed of 4F2hc and y(+)LAT-2, the latter encoded by the SLC7A6 gene and more ubiquitously expressed than SLC7A7. On the basis of both the pattern of expression and the transport activity, y(+)LAT-2 might compensate for CAA transport when y(+)LAT-1 is defective. By expression in Xenopus laevis oocytes and mammalian cells, we functionally analysed two SLC7A7 mutants, E36del and F152L, respectively, the former displaying a partial dominant-negative effect. The results of the present study provide further insight into the molecular pathogenesis of LPI: a putative multiheteromeric structure of both [4F2hc/y(+)LAT-1] and [4F2hc/y(+)LAT-2], and the interference between y(+)LAT-1 and y(+)LAT-2 proteins. This interference can explain why the compensatory mechanism, that is, an increased expression of SLC7A6 as seen in lymphoblasts from LPI patients, may not be sufficient to restore the y(+)L system activity.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Transport Systems, Basic/metabolism , Fusion Regulatory Protein 1, Light Chains/genetics , Lysine/urine , Amino Acid Transport System y+L , Animals , Arginine/metabolism , Cell Line , Child, Preschool , Dogs , Fusion Regulatory Protein 1, Light Chains/metabolism , Humans , Male , Mutation , Oocytes/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...