Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 921: 171050, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38369139

ABSTRACT

This study aims to assess the effect of different urban configuration regarding the choice of wastewater management of the district with source separation systems. Understanding this link can guide researchers, and also urban actors, in order to choose the best source separation solution to implement in a specific urban configuration. For this purpose, an integrated modelling approach was used to model the district with different types of urban planning, the water resources recovery facility (WRRF) and create a life cycle inventory to carry out a life cycle assessment (LCA). Six different urban configurations were tested with three different source separation scenarios and compared with an advanced WRRF with high level of nutrients and organic matter recovery. This study concludes that urine source separation is beneficial compared to advanced WWRF for all the urban configurations. Sewer construction was identified as the main contributor to environmental impact for the low-density configuration (pavilions), limiting the benefits of source separation in this urban settlement. Blackwater separation with a decentralised treatment is only beneficial for high densely populated area. Treatment of blackwater and greywater for reuse, has greater impact than reference scenario, in all urban configurations, due to high energy consumption for greywater treatment. Future research should therefore explore technical solutions for limiting the energy consumption.

2.
Sci Total Environ ; 912: 169520, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38141995

ABSTRACT

Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmäki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation. Concentrations of iron(III) and iron(II), phosphorus, and sulfur were used to evaluate the reduction of iron and the formation potential of vivianite. Mössbauer spectroscopy and X-ray diffraction (XRD) analysis were used to confirm the presence of vivianite in various locations on sludge lines. The results show that the vivianite formation potential increases as the molar Fe:P ratio increases, the anaerobic sludge retention time increases, and the sulfate concentration decreases. The digester is a prominent location for vivianite recovery, but not the only one. This work gives valuable insights into the dynamic interrelations of iron, phosphorus, and sulfur in full-scale conditions. These results will support the understanding of vivianite formation and pave the way for an alternative solution for vivianite recovery for example in plants that do not have an anaerobic digester.


Subject(s)
Ferric Compounds , Sewage , Sewage/chemistry , Waste Disposal, Fluid/methods , Phosphates/chemistry , Ferrous Compounds/chemistry , Iron/chemistry , Phosphorus/chemistry , Sulfur
3.
Water Sci Technol ; 86(3): 482-495, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35960832

ABSTRACT

Stringent discharge regulations are encouraging researchers to create innovative and sustainable wastewater treatment solutions. Urine source separation (USS) is among the potent approaches that may reduce nutrient peak loads in the influent wastewater and improve nutrient recovery. A phenomenological model was used to simulate dynamic influent properties and predict the advantages gained from implementing USS in an urban water basin. Several scenarios were investigated assuming different levels of deployment: at the entire city, or specifically in office buildings for men's urine only, or for both men and women employees. The results confirmed that all scenarios of urine source separation offered benefits at the treatment plant in terms of reducing nitrogen influent load. The economic benefits in terms of reducing energy consumption for nitrification and decreasing methanol addition for denitrification were quantified, and results confirmed environmental advantages gained from different USS scenarios. Despite larger advantages gained from a global USS rate in an entire city, implementation of a specific USS in office buildings would remain more feasible from a logistical perspective. A significant benefit in terms of reducing greenhouse gas emissions is demonstrated and this was especially due to the high level of N2O emissions avoided in nitrifying biological aerated filter.


Subject(s)
Water Purification , Water , Denitrification , Female , Humans , Male , Nitrification , Nitrogen , Nitrous Oxide/analysis , Wastewater , Water Purification/methods
4.
Bioresour Technol ; 354: 127180, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35439560

ABSTRACT

Biological methanation is a promising technology for gas and carbon valorisation. Therefore, process stability is required to allow its scale up and development. A pilot scale bubble column reactor was used for ex situ biological methanation with Mixed Microbial Culture (MMC). A 16S rRNA high throughput sequencing analysis revealed the MMC reached a stable composition with 50-60% Methanobacterium in closed liquid mode, a robust genus adapted to large scale constraints. Class MBA03 was identified as an indicator of process stability. Methanogenic genera moved toward 50% of Methanothermobacter when intensifying the process, and proteolytic activity was identified while 94% of H2/CO2 was converted into methane at 4NL.L-1.d-1. This study gives clarifications on the origin of volatile fatty acids (VFA) apparitions. Acetate and propionate accumulated when methanogenic activity weakened due to nutritive deficiency, and when PH2 reached 0.7 bar. The MMC withstood a storage period of 34d at room temperature indicating its suitability for industrial constraints.


Subject(s)
Carbon Dioxide , Euryarchaeota , Biofuels/microbiology , Bioreactors/microbiology , Euryarchaeota/genetics , Hydrogen , Methane , RNA, Ribosomal, 16S/genetics
5.
Waste Manag ; 101: 150-160, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31610476

ABSTRACT

Hydrolysis is considered the limiting step during solid waste anaerobic digestion (including co-digestion of sludge and biosolids). Mechanisms of hydrolysis are mechanistically not well understood with detrimental impact on model predictive capability. The common approach to multiple substrates is to consider simultaneous degradation of the substrates. This may not have the capacity to separate the different kinetics. Sequential degradation of substrates is theoretically supported by microbial capacity and the composite nature of substrates (bioaccessibility concept). However, this has not been experimentally assessed. Sequential chemical fractionation has been successfully used to define inputs for an anaerobic digestion model. In this paper, sequential extractions of organic substrates were evaluated in order to compare both models. By removing each fraction (from the most accessible to the least accessible fraction) from three different substrates, anaerobic incubation tests showed that for physically structured substrates, such as activated sludge and wheat straw, sequential approach could better describe experimental results, while this was less important for homogeneous materials such as pulped fruit. Following this, anaerobic incubation tests were performed on five substrates. Cumulative methane production was modelled by the simultaneous and sequential approaches. Results showed that the sequential model could fit the experimental data for all the substrates whereas simultaneous model did not work for some substrates.


Subject(s)
Models, Theoretical , Sewage , Anaerobiosis , Biodegradation, Environmental , Bioreactors , Hydrolysis , Methane
6.
Water Res ; 156: 337-346, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30928528

ABSTRACT

Nitrifying biologically active filters (BAFs) have been found to be high emitters of nitrous oxide (N2O), a powerful greenhouse gas contributing to ozone layer depletion. While recent models have greatly improved our understanding of the triggers of N2O emissions from suspended-growth processes, less is known about N2O emissions from full-scale biofilm processes. Tertiary nitrifying BAFs have been modeled at some occasions but considering strong simplifications on the description of gas-liquid exchanges which are not appropriate for N2O prediction. In this work, a tertiary nitrifying BAF model including the main N2O biological pathways was developed and confronted to full-scale data from Seine Aval, the largest wastewater resource recovery facility in Europe. A mass balance on the gaseous compounds was included in order to correctly describe the N2O gas-liquid partition, thus N2O emissions. Preliminary modifications of the model structure were made to include the gas phase as a compartment of the model, which significantly affected the prediction of nitrification. In particular, considering gas hold-up influenced the prediction of the hydraulic retention time, thus nitrification performances: a 3.5% gas fraction reduced ammonium removal by 13%, as the liquid volume, small in such systems, is highly sensitive to the gas presence. Finally, the value of the volumetric oxygen transfer coefficient was adjusted to successfully predict both nitrification and N2O emissions.


Subject(s)
Bioreactors , Nitrification , Europe , Nitrous Oxide , Wastewater
8.
Sci Total Environ ; 624: 1250-1262, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29929238

ABSTRACT

Including the temporal dimension in the Life Cycle Assessment (LCA) method is a very recent research subject. A complete framework including dynamic Life Cycle Inventory (LCI) and dynamic Life Cycle Impact Assessment (LCIA) was proposed with the possibility to calculate temporal deployment of climate change and ecotoxicity/toxicity indicators. However, the influence of different temporal parameters involved in the new dynamic method was not still evaluated. In the new framework, LCI and LCIA results are obtained as discrete values in function of time (vectors and matrices). The objective of this study is to evaluate the influence of the temporal profile of the dynamic LCI and calculation time span (or time horizon in conventional LCA) on the final LCA results. Additionally, the influence of the time step used for the impact dynamic model resolution was analysed. The range of variation of the different time steps was from 0.5day to 1year. The graphical representation of the dynamic LCA results shown important features such as the period in time and the intensity of the worst or relevant impact values. The use of a fixed time horizon as in conventional LCA does not allow the proper consideration of essential information especially for time periods encompassing the life time of the studied system. Regarding the different time step sizes used for the dynamic LCI definition, they did not have important influence on the dynamic climate change results. At the contrary, the dynamic ecotoxicity and human toxicity impacts were strongly affected by this parameter. Similarly, the time step for impact dynamic model resolution had no influence on climate change calculation (step size up to 1year was supported), while the toxicity model resolution requires adaptive time step definition with maximum size of 0.5day.

9.
Water Sci Technol ; 78(10): 2119-2130, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30629540

ABSTRACT

This paper summarizes recent developments in biological phosphorus removal modelling, with special attention to side-stream enhanced biological phosphorus removal (S2EBPR) systems on which previous models proved to be ineffective without case-by-case parameter adjustments. Through the research and experience of experts and practitioners, a new bio-kinetic model was developed including an additional group of biomass (glycogen accumulating organisms - GAOs) and new processes (such as aerobic and anoxic maintenance for PAO and GAO; enhanced denitrification processes; fermentation by PAOs which - along with PAO selection - is driven by oxidation-reduction potential (ORP)). This model successfully described various conditions in laboratory measurements and full plant data. The calibration data set is provided by Clean Water Services from Rock Creek Facility (Hillsboro, OR) including two parallel trains: conventional A2O and Westbank configurations, allowing the model to be verified on conventional and side-stream EBPR systems as well.


Subject(s)
Models, Chemical , Phosphorus/chemistry , Water Pollutants, Chemical/analysis , Biomass , Bioreactors , Denitrification , Glycogen , Phosphorus/analysis , Polyphosphates
10.
Water Res ; 126: 50-59, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28918078

ABSTRACT

Innovative treatment technologies and management methods are necessary to valorise the constituents of wastewater, in particular nutrients from urine (highly concentrated and can have significant impacts related to artificial fertilizer production). The FP7 project, ValuefromUrine, proposed a new two-step process (called VFU) based on struvite precipitation and microbial electrolysis cell (MEC) to recover ammonia, which is further transformed into ammonium sulphate. The environmental and economic impacts of its prospective implementation in the Netherlands were evaluated based on life cycle assessment (LCA) methodology and operational costs. In order to tackle the lack of stable data from the pilot plant and the complex effects on wastewater treatment plant (WWTP), process simulation was coupled with LCA and costs assessment using the Python programming language. Additionally, particular attention was given to the propagation and analysis of inputs uncertainties. Five scenarios of VFU implementation were compared to the conventional treatment of 1 m3 of wastewater. Inventory data were obtained from SUMO software for the WWTP operation. LCA was based on Brightway2 software (using ecoinvent database and ReCiPe method). The results, based on 500 iterations sampled from inputs distributions (foreground parameters, ecoinvent background data and market prices), showed a significant advantage of VFU technology, both at a small and decentralized scale and at a large and centralized scale (95% confidence intervals not including zero values). The benefits mainly concern the production of fertilizers, the decreased efforts at the WWTP, the water savings from toilets flushing, as well as the lower infrastructure volumes if the WWTP is redesigned (in case of significant reduction of nutrients load in wastewater). The modelling approach, which could be applied to other case studies, improves the representativeness and the interpretation of results (e.g. complex relationships, global sensitivity analysis) but requires additional efforts (computing and engineering knowledge, longer calculation time). Finally, the sustainability assessment should be refined in the future with the development of the technology at larger scale to update these preliminary conclusions before its commercialization.


Subject(s)
Environment , Urine/chemistry , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/methods , Costs and Cost Analysis , Electrolysis/methods , Fertilizers , Netherlands , Prospective Studies , Sewage/chemistry , Struvite/chemistry , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry , Wastewater/economics
11.
Water Res ; 125: 400-409, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28889039

ABSTRACT

Up to half of the organic fraction of an urban wastewater is made up of particulate settleable solids (PSS). In activated sludge process (AS) this material is rapidly adsorbed on to microbial flocs but is only slowly and partially degraded. To better understand and predict the degradation kinetics observed, a determination of the proportion of hydrolytic bacteria is required. As inoculum is usually added in the biodegradation tests, a comparison is required between the roles of bacteria introduced with the inoculum and those attached to the substrate. In this work, respirometric batch experiments were performed on PSS collected from upstream or downstream of the sewers of Toulouse city. Toilet paper (TP) and cellulose, two model particulate substrates, were also investigated. To understand the role of the active biomass in hydrolysis, increasing concentrations of AS were added to a certain amount of PSS or TP. No correlation was observed between the concentration of AS and the rate and duration of degradation of the particulate matter. Simulations performed after calibration of the model ASM-1 allowed the fraction of hydrolytic bacteria to be estimated in both the substrate and the AS-inoculum. Only a very small fraction of the bacteria of AS and of the substrate samples were found to be efficient for hydrolysis. Hydrolysis was mainly initiated by a small proportion of the microorganisms, and especially by cells already attached to PSSs. Moreover, the fraction of bacteria able to hydrolyse large particles present in an inoculum of AS depended on the initial contamination of the surface of the particles.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Sewage/microbiology , Wastewater/microbiology , Adsorption , Biomass , Colloids , Computer Simulation , Hydrolysis , Kinetics , Sewage/chemistry , Wastewater/chemistry
12.
Water Sci Technol ; 75(3-4): 491-500, 2017 02.
Article in English | MEDLINE | ID: mdl-28192343

ABSTRACT

The aim of this work is to compare the capability of two recently proposed two-pathway models for predicting nitrous oxide (N2O) production by ammonia-oxidizing bacteria (AOB) for varying ranges of dissolved oxygen (DO) and nitrite. The first model includes the electron carriers whereas the second model is based on direct coupling of electron donors and acceptors. Simulations are confronted to extensive sets of experiments (43 batches) from different studies with three different microbial systems. Despite their different mathematical structures, both models could well and similarly describe the combined effect of DO and nitrite on N2O production rate and emission factor. The model-predicted contributions for nitrifier denitrification pathway and hydroxylamine pathway also matched well with the available isotopic measurements. Based on sensitivity analysis, calibration procedures are described and discussed for facilitating the future use of those models.


Subject(s)
Ammonia/metabolism , Betaproteobacteria/metabolism , Models, Theoretical , Nitrous Oxide/metabolism , Water Purification/methods , Betaproteobacteria/growth & development , Biomass , Denitrification , Hydroxylamine/chemistry , Nitrites/analysis , Nitrites/metabolism , Nitrous Oxide/analysis , Oxidation-Reduction , Oxygen/analysis , Oxygen/metabolism
13.
Bioprocess Biosyst Eng ; 39(3): 493-510, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26803653

ABSTRACT

Five activated sludge models describing N2O production by ammonium oxidising bacteria (AOB) were compared to four different long-term process data sets. Each model considers one of the two known N2O production pathways by AOB, namely the AOB denitrification pathway and the hydroxylamine oxidation pathway, with specific kinetic expressions. Satisfactory calibration could be obtained in most cases, but none of the models was able to describe all the N2O data obtained in the different systems with a similar parameter set. Variability of the parameters can be related to difficulties related to undescribed local concentration heterogeneities, physiological adaptation of micro-organisms, a microbial population switch, or regulation between multiple AOB pathways. This variability could be due to a dependence of the N2O production pathways on the nitrite (or free nitrous acid-FNA) concentrations and other operational conditions in different systems. This work gives an overview of the potentialities and limits of single AOB pathway models. Indicating in which condition each single pathway model is likely to explain the experimental observations, this work will also facilitate future work on models in which the two main N2O pathways active in AOB are represented together.


Subject(s)
Bacteria/metabolism , Models, Biological , Nitrous Oxide/metabolism , Wastewater/microbiology , Water Microbiology , Water Purification
14.
Chemosphere ; 117: 262-70, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25113992

ABSTRACT

This study aims to clarify the biochemical nature and interactions of Extracellular Polymeric Substances (EPS) involved in the structure and cohesive properties of aerobic granules. Granules were incubated with selective hydrolytic enzymes or with chemicals and the resistance of digested granules to shear stress was evaluated. After α-amylase digestion, the hydrodynamic stress released macro-particles (>315 µm) while soluble molecules (<1.5 µm) and micro-particles (1.5-315 µm) where mainly recovered after savinase and EDTA treatments. These data show that α (1-4) glucans and proteins are key polymers for granule cohesion and that divalent cationic bridging is a major aggregative mechanism. On the basis of these experiments and microscopy observations, a model is proposed for the spatial organization of EPS in the granular structure, in which α glucans are arranged in a capsular layer surrounding bacterial clusters while anionic proteins constitute the intercellular cement that may reinforce cohesion inside the bacterial clusters.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Calcium/metabolism , Polymers/chemistry , Polysaccharides, Bacterial/metabolism , Aerobiosis , Bioreactors , Hydrolysis , Shear Strength
15.
Water Sci Technol ; 67(11): 2363-73, 2013.
Article in English | MEDLINE | ID: mdl-23752367

ABSTRACT

Increasingly stringent effluent limits and an expanding scope of model system boundaries beyond activated sludge has led to new modelling objectives and consequently to new and often more detailed modelling concepts. Nearly three decades after the publication of Activated Sludge Model No1 (ASM1), the authors believe it is time to re-evaluate wastewater characterisation procedures and targets. The present position paper gives a brief overview of state-of-the-art methods and discusses newly developed measurement techniques on a conceptual level. Potential future paths are presented including on-line instrumentation, promising measuring techniques, and mathematical solutions to fractionation problems. This is accompanied by a discussion on standardisation needs to increase modelling efficiency in our industry.


Subject(s)
Models, Theoretical , Wastewater/analysis , Biological Oxygen Demand Analysis , Biomass , Particle Size , Waste Disposal, Fluid/methods , Water Pollutants/analysis
16.
Water Sci Technol ; 67(4): 789-96, 2013.
Article in English | MEDLINE | ID: mdl-23306256

ABSTRACT

Activated sludge models have assumed that a portion of organic solids in municipal wastewater influent is unbiodegradable. Also, it is assumed that solids from biomass decay cannot be degraded further. The paper evaluates these assumptions based on data from systems operating at higher than typical sludge retention times (SRTs), including membrane bioreactor systems with total solids retention (no intentional sludge wastage). Data from over 30 references and with SRTs of up to 400 d were analysed. A modified model that considers the possible degradation of the two components is proposed. First order degradation rates of approximately 0.007 d(-1) for both components appear to improve sludge production estimates. Factors possibly influencing these degradation rates such as wastewater characteristics and bioavailability are discussed.


Subject(s)
Bioreactors , Models, Theoretical , Sewage , Membranes, Artificial
17.
Appl Biochem Biotechnol ; 166(7): 1685-702, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22415780

ABSTRACT

A multi-method protocol previously proposed for the extraction of extracellular polymeric substances (EPS) from flocculated sludges was investigated on dense aerobic granules. The protocol combines mechanical disruption by sonication and chemical extraction using the Tween detergent and the cation chelator, EDTA. Polysaccharides were mainly recovered during the first sonication step while proteins were recovered all along the extractive procedure with a high prevalence in the EDTA step. These data confirmed the interest of the multi-method protocol for harvesting a diversified pool of EPS from dense granules and for fractionation of the polymers according to their physicochemical properties. In addition, the high extractability of proteins with EDTA confers a specific behavior of the aerobic granules towards the multi-method extraction protocol, supporting the idea that proteins are associated in the granule matrix through ionic interactions involving divalent cations. Analysis of the extracted EPS by anionic exchange chromatography confirmed the presence of highly anionic proteins that were specifically detected in the extracts obtained from granules. One important question is now to investigate whether these highly anionic proteins are involved in the aggregation and densification process and if their presence is related to the cohesive properties of these particles.


Subject(s)
Bacteria, Anaerobic/metabolism , Extracellular Space/chemistry , Polysaccharides/isolation & purification , Proteins/isolation & purification , Sewage/microbiology , Aerobiosis , Bioreactors , Cations, Divalent/metabolism , Chemical Fractionation , Chromatography, Ion Exchange , Detergents/chemistry , Flocculation , Polysorbates/chemistry , Sonication
18.
Water Sci Technol ; 65(2): 289-95, 2012.
Article in English | MEDLINE | ID: mdl-22233907

ABSTRACT

The aim of the work was to quantify the influence of the simultaneous presence of flocs and granules in the nitrifying activity in a sequencing batch airlift reactor (SBAR). The nitrification rate and oxygen limitation of flocs, granules and hybrid sludge was investigated using respirometric assays at different dissolved oxygen concentrations. The spatial distribution of Ammonium Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB) was investigated using fluorescence in situ hybridization (FISH). Results showed that the nitrification rate was much less sensitive to oxygen limitation in systems containing a fraction of flocs than in pure granular sludge. Ammonium Oxidizing Bacteria (AOB) were found to be distributed in similar quantities in flocs and granules whereas the Nitrite Oxidizing Bacteria (NOB) were located preferentially in granules. This study showed that the presence of flocs with granules could increase the robustness of the process to transitory reductions of aeration.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Nitrogen Compounds/metabolism , Oxygen/analysis , Waste Disposal, Fluid/methods , Aerobiosis , Bacteria/classification , Bacteria/growth & development , Biological Oxygen Demand Analysis , Biomass , Flocculation , In Situ Hybridization, Fluorescence , Microscopy, Confocal , Sewage/microbiology
19.
Water Res ; 43(20): 5097-108, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19796784

ABSTRACT

In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.


Subject(s)
Bioreactors/microbiology , Waste Disposal, Fluid/methods , Waste Products/analysis , Aerobiosis , Anaerobiosis , Biodegradation, Environmental , Nitrogen/metabolism
20.
Bioresour Technol ; 100(21): 5021-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19539463

ABSTRACT

The study regards para-nitrophenol (p-NP) removal by a mixed culture in a batch reactor under aerobic conditions performed at low ratio substrate (p-NP) to p-NP degrading microorganisms (0.09 < I(0)/(X(B,PNP))(0) < 0.80 g COD(PNP)g VSS(-1)). p-NP biodegradation was modelled with a dual-biomass kinetic including Haldane formalism. The purpose was to examine the effect of operating conditions of acclimation phases in the kinetic parameters estimated by respirometric measurements. The experiments were conducted with a series of successive additions of p-NP and a biogenic substrate (Ss) in different proportions (0 < R = Ss/I < 6.6). To place emphasis on decisive role played by frequency and amount of p-NP supply, a parallel was drawn with continuous processes, characterising acclimation cycles by different organic loading rate (207 < OLR < 1490 mg COD(PNP) l(-1) d(-1)). During acclimation, results showed progressively decreasing half saturation constant (K(s)(PNP)) values (11.4-1.21 mg CODl(-1)) whereas inhibition coefficient K(I)(PNP) increased (72.4-289 mg CODl(-1)), as the specific degradation rate increased. The inverse behaviour was observed during starvation periods. At the end of acclimation, higher values of growth yield (0.39 < Y(PNP) < 0.63 mg COD(X) mg COD(PNP)(-1)) and maximum growth rate (1.09 < mu(max)(PNP) < 2.01 d(-1)) were obtained for cycles with low R.


Subject(s)
Acclimatization , Biomass , Nitrophenols/metabolism , Animals , Bacteria/cytology , Bacteria/metabolism , Biodegradation, Environmental , Eukaryota/cytology , Flocculation , Kinetics , Models, Biological , Oxygen/metabolism , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...