Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Biol ; 47Suppl 1(Suppl 1): e20230262, 2024.
Article in English | MEDLINE | ID: mdl-38666746

ABSTRACT

Introducing new grass species into cultivation has long been proposed as beneficial to increase the sustainability and diversity of productive systems. However, wild species with potential tend to show high seed dormancy, causing slow, poor, and unsynchronized seedling emergence. Meanwhile, domesticated species, such as cereals, show lower seed dormancy, facilitating their successful establishment. In this work, we conduct a review of phenotypic variation on seed dormancy and its genetic and molecular basis. This quantitative and highly heritable trait shows phenotype plasticity which is modulated by environmental factors. The level of dormancy depends on the expression of genes associated with the metabolism and sensitivity to the hormones abscisic acid (ABA) and gibberellins (GA), along with other dormancy-specific genes. The genetic regulation of these traits is highly conserved across species. The low seed dormancy observed in cereals and some temperate forages was mostly unconsciously selected during various domestication processes. Emphasis is placed on selecting materials with low seed dormancy for warm-season forage grasses to improve their establishment and adoption. Finally, we review advances in the domestication of dallisgrass, where seed dormancy was considered a focus trait throughout the process.

2.
Ann Bot ; 123(3): 521-532, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30346473

ABSTRACT

BACKGROUND AND AIMS: The genus Solanum includes important vegetable crops and their wild relatives. Introgression of their useful traits into elite cultivars requires effective recombination between hom(e)ologues, which is partially determined by genome sequence differentiation. In this study we compared the repetitive genome fractions of wild and cultivated species of the potato and tomato clades in a phylogenetic context. METHODS: Genome skimming followed by a clustering approach was used as implemented in the RepeatExplorer pipeline. Repeat classes were annotated and the sequences of their main domains were compared. KEY RESULTS: Repeat abundance and genome size were correlated and the larger genomes of species in the tomato clade were found to contain a higher proportion of unclassified elements. Families and lineages of repetitive elements were largely conserved between the clades, but their relative proportions differed. The most abundant repeats were Ty3/Gypsy elements. Striking differences in abundance were found in the highly dynamic Ty3/Gypsy Chromoviruses and Ty1/Copia Tork elements. Within the potato clade, early branching Solanum cardiophyllum showed a divergent repeat profile. There were also contrasts between cultivated and wild potatoes, mostly due to satellite amplification in the cultivated species. Interspersed repeat profiles were very similar among potatoes. The repeat profile of Solanum etuberosum was more similar to that of the potato clade. CONCLUSIONS: The repeat profiles in Solanum seem to be very similar despite genome differentiation at the level of collinearity. Removal of transposable elements by unequal recombination may have been responsible for structural rearrangements across the tomato clade. Sequence variability in the tomato clade is congruent with clade-specific amplification of repeats after its divergence from S. etuberosum and potatoes. The low differentiation among potato and its wild relatives at the level of interspersed repeats may explain the difficulty in discriminating their genomes by genomic in situ hybridization techniques.


Subject(s)
Evolution, Molecular , Genome, Plant , Repetitive Sequences, Nucleic Acid , Solanaceae/genetics , DNA, Plant/analysis , Solanum lycopersicum/genetics , Phylogeny , Sequence Analysis, DNA , Solanum/genetics
3.
Mol Ecol ; 23(2): 374-89, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24372681

ABSTRACT

Understanding the spatiotemporal distribution of genetic variation and the ways in which this distribution is connected to the ecological context of natural populations is fundamental for understanding the nature and mode of intraspecific and, ultimately, interspecific differentiation. The Petunia axillaris complex is endemic to the grasslands of southern South America and includes three subspecies: P. a. axillaris, P. a. parodii and P. a. subandina. These subspecies are traditionally delimited based on both geography and floral morphology, although the latter is highly variable. Here, we determined the patterns of genetic (nuclear and cpDNA), morphological and ecological (bioclimatic) variation of a large number of P. axillaris populations and found that they are mostly coincident with subspecies delimitation. The nuclear data suggest that the subspecies are likely independent evolutionary units, and their morphological differences may be associated with local adaptations to diverse climatic and/or edaphic conditions and population isolation. The demographic dynamics over time estimated by skyline plot analyses showed different patterns for each subspecies in the last 100 000 years, which is compatible with a divergence time between 35 000 and 107 000 years ago between P. a. axillaris and P. a. parodii, as estimated with the IMa program. Coalescent simulation tests using Approximate Bayesian Computation do not support previous suggestions of extensive gene flow between P. a. axillaris and P. a. parodii in their contact zone.


Subject(s)
Biological Evolution , Genetic Variation , Petunia/classification , Bayes Theorem , Cell Nucleus/genetics , Climate , DNA, Chloroplast/genetics , DNA, Plant/genetics , Flowers/anatomy & histology , Genetics, Population , Grassland , Haplotypes , Hybridization, Genetic , Models, Genetic , Petunia/anatomy & histology , Petunia/genetics , Sequence Analysis, DNA , South America
4.
Am J Bot ; 97(3): e17-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-21622399

ABSTRACT

PREMISE OF THE STUDY: Microsatellites were isolated from two species of the genus Haageocereus (H. tenuis and H. pseudomelanostele) to be applied in studies of genetic diversity and population structure. • METHODS AND RESULTS: Five loci were employed in a preliminary study of genetic diversity and population differentiation in two rare (H. tenuis and H. repens) and two widespread (H. acranthus and H. pseudomelanostele) species, yielding between one and 44 alleles per locus. All five loci were polymorphic, with overall levels of observed and expected heterozygosities ranging from 0.478 to 0.871 and from 0.564 to 0.956, respectively. Three additional loci were scored in H. pseudomelanostele. These eight plus the remaining 11 loci were amplified from putative parents of three hybrids involving Haageocereus and Espostoa. • CONCLUSIONS: These markers will facilitate analysis of genetic diversity, hybridization, and population differentiation throughout Haageocereus and Espostoa.

SELECTION OF CITATIONS
SEARCH DETAIL
...