Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(10): 25274-25286, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34797539

ABSTRACT

This paper addresses the problem of sustainability in remediation, retrofit, and seismic upgrading of historic masonry structures. Different rehabilitation techniques and some successful applications throughout the Balkans and Italy are described, with particular emphasis to the shear reinforcement of wall panels. The selected techniques aim at improving the seismic performance, preserving the structures for future generations, having the least impact in altering the architectural and heritage values, as well as being sustainable, in terms of reduced carbon dioxide emissions, reversibility, and low energy consumption. The use of cross-laminated timber (CLT), natural fibers, and fiber-reinforced Polymers (FRP) jacketing with natural lime coatings are discussed. The paper concludes by summarizing key successes of the proposed rehabilitation solutions in conservation engineering and suggests areas in which these could be used with great advantage.


Subject(s)
Engineering , Balkan Peninsula , Italy , Polymers
2.
Materials (Basel) ; 12(2)2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30641892

ABSTRACT

A study concerning the flexural behavior of glass beams reinforced with steel fibers is presented in this paper. Two types of steel fibers were used for reinforcement, made of high strength and stainless steel. The coupling effect of the two materials was studied in terms of energy dissipation and failure loads, by comparing the elastic limits and the post-elastic behaviors of the reinforced glass beams. Results demonstrated that it is possible to increase the overall structural safety of a steel fiber reinforced glass beam. The relationship between the bending force and deflections was initially linear, however, following the opening of first cracks in the glass, the reinforcement steel material was able to withstand the tensile stresses, governing the overall post-elastic phase.

3.
Materials (Basel) ; 11(1)2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29267248

ABSTRACT

The aim of this work was to develop and validate an experimental methodology suitable for analysing on-site the behaviour of fibre-reinforced wooden structures. The proposed measurement method is based on the application of fibre Bragg grating (FBG) strain sensors. An analysis of adhesive behaviour was performed preliminarily, which provided indications for choosing the type of adhesive and for the fibre bonding length in accordance with the volume of measurement. The first series of tests was carried out on wood samples to verify the coupling between the measuring sensor and the wood support when the latter is subject to mechanical stresses. The second investigation was done on site to test the behaviour of a historical wood floor before and after reinforcement by means of a series of tests performed using optical fibres with the Bragg grating. The optical fibre system measurements were compared to those obtained using a laser vibrometer, a measurement system of proven stability and precision. The comparison makes it possible to confirm the validity of the results and the reliability of the system for the monitoring of historic wooden structures.

4.
Materials (Basel) ; 10(7)2017 Jul 08.
Article in English | MEDLINE | ID: mdl-28773129

ABSTRACT

The article presents a hybrid monitoring technique for the measurement of the deformation field. The goal is to obtain information about crack propagation in existing structures, for the purpose of monitoring their state of health. The measurement technique is based on the capture and analysis of a digital image set. Special markers were used on the surface of the structures that can be removed without damaging existing structures as the historical masonry. The digital image analysis was done using software specifically designed in Matlab to follow the tracking of the markers and determine the evolution of the deformation state. The method can be used in any type of structure but is particularly suitable when it is necessary not to damage the surface of structures. A series of experiments carried out on masonry walls of the Oliverian Museum (Pesaro, Italy) and Palazzo Silvi (Perugia, Italy) have allowed the validation of the procedure elaborated by comparing the results with those derived from traditional measuring techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...