Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Spinal Cord Med ; 44(2): 229-240, 2021 03.
Article in English | MEDLINE | ID: mdl-31211658

ABSTRACT

Context/objective: Examining hemoglobin (Hb) dynamics with regard to the potential of neurological remission in patients with traumatic spinal cord injury (TSCI).Design: Prospective Clinical Observational Study.Setting: BG Trauma Centre Ludwigshafen, Department of Paraplegiology, Rhineland-Palatinate, Germany.Methods: From 2011 to 2017 a total of 80 patients with acute spinal injury were enrolled and divided into three groups: initial neurological impairment either with (G1; n = 33) or without subsequent neurological remission (G0; n = 35) and vertebral fractures without initial neurological impairment as control group (C; n = 12). Blood samples were taken for 3 months at 11 time-points after injury. Analyses were performed using routine diagnostics.Outcome measures: Multiple logistic regression was used to determine the prognostic value of Hb regarding neurological remission respecting clinical covariates.Results: Data showed elevated mean Hb concentrations in G1 from the third day to 1 month compared to G0, Hb levels were significantly higher in G1 after 3 days (P = 0.03, G1 > G0). The final multiple logistic regression model based on this data predicting the presence of neurological remission resulted in an AUC (area under the curve) of 80.5% (CI: 67.8%-93.2%) in the ROC (receiver operating characteristic) analysis.Conclusion: Elevated Hb concentrations are associated with a higher likelihood of neurological remission. Elevated concentrations of Hb in G1 compared to G0 over time might be linked to both a better initial oxygen supply response and a decreased ECM (extracellular matrix) degradation highlighting the role of Hb as a valuable biomarker for neural regeneration after TSCI.


Subject(s)
Spinal Cord Injuries , Biomarkers , Humans , Prognosis , Prospective Studies , Spinal Cord Injuries/diagnosis
2.
Antioxidants (Basel) ; 9(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414139

ABSTRACT

Traumatic Spinal Cord Injury (TSCI) is debilitating and often results in a loss of motor and sensory function caused by an interwoven set of pathological processes. Oxidative stress and inflammatory processes are amongst the critical factors in the secondary injury phase after TSCI. The essential trace element Zinc (Zn) plays a crucial role during this phase as part of the antioxidant defense system. The study aims to determine dynamic patterns in serum Zn concentration in patients with TSCI and test for a correlation with neurological impairment. A total of 42 patients with TSCI were enrolled in this clinical observational study. Serum samples were collected at five different points in time after injury (at admission, and after 4 h, 9 h, 12 h, 24 h, and 3 d). The analysis of the serum Zn concentrations was conducted by total reflection X-ray fluorescence (TXRF). The patients were divided into two groups-a study group S (n = 33) with neurological impairment, including patients with remission (G1, n = 18) and no remission (G0, n = 15) according to a positive AIS (American Spinal Injury Association (ASIA) Impairment Scale) conversion within 3 months after the trauma; and a control group C (n = 9), consisting of subjects with vertebral fractures without neurological impairment. The patient data and serum concentrations were examined and compared by non-parametric test methods to the neurological outcome. The median Zn concentrations in group S dropped within the first 9 h after injury (964 µg/L at admission versus 570 µg/L at 9 h, p < 0.001). This decline was stronger than in control subjects (median of 751 µg/L versus 729 µg/L, p = 0.023). A binary logistic regression analysis including the difference in serum Zn concentration from admission to 9 h after injury yielded an area under the curve (AUC) of 82.2% (CI: 64.0-100.0%) with respect to persistent neurological impairment. Early Zn concentration dynamics differed in relation to the outcome and may constitute a helpful diagnostic indicator for patients with spinal cord trauma. The fast changes in serum Zn concentrations allow an assessment of neurological impairment risk on the first day after trauma. This finding supports strategies for improving patient care by avoiding strong deficits via adjuvant nutritive measures, e.g., in unresponsive patients after trauma.

3.
Antioxidants (Basel) ; 8(11)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31653023

ABSTRACT

In the secondary injury phase after traumatic spinal cord injury (TSCI), oxidative stress and neuroinflammatory responses at the site of injury constitute crucial factors controlling damage extent and may serve as potential therapeutic targets. We determined Magnesium (Mg) serum concentration dynamics in context with the potential of neurological remission in patients with TSCI as Mg is suspected to limit the production of reactive oxygen species and reduce lipid peroxidation. A total of 29 patients with acute TSCI were enrolled, and blood samples were drawn over 3 months at 11 time-points and Mg quantification was performed. Patients were divided into those with (G1, n = 18) or without neurological remission (G0, n = 11). Results show a slight drop in Mg level during the first 4 h after injury, then remained almost unchanged in G1, but increased continuously during the first 7 days after injury in G0. At day 7 Mg concentrations in G1 and G0 were significantly different (p = 0.039, G0 > G1). Significant differences were detected between patients in G1 that presented an AIS (ASIA Impairment Scale) conversion of 1 level versus those with more than 1 level (p = 0.014, G1 AIS imp. = +1 > G1 AI imp. > +1). Low and decreasing levels of Mg within the first 7 days are indicative of a high probability of neurological remission, whereas increasing levels are associated with poor neurological outcome.

4.
PLoS One ; 11(7): e0159764, 2016.
Article in English | MEDLINE | ID: mdl-27447486

ABSTRACT

After traumatic spinal cord injury, an acute phase triggered by trauma is followed by a subacute phase involving inflammatory processes. We previously demonstrated that peripheral serum cytokine expression changes depend on neurological outcome after spinal cord injury. In a subsequent intermediate phase, repair and remodeling takes place under the mediation of growth factors such as Insulin-like Growth Factor 1 (IGF-1). IGF-1 is a promising growth factor which is thought to act as a neuroprotective agent. Since previous findings were taken from animal studies, our aim was to investigate this hypothesis in humans based on peripheral blood serum. Forty-five patients after traumatic spinal cord injury were investigated over a period of three months after trauma. Blood samples were taken according to a fixed schema and IGF-1 levels were determined. Clinical data including AIS scores at admission to the hospital and at discharge were collected and compared with IGF-1 levels. In our study, we could observe distinct patterns in the expression of IGF-1 in peripheral blood serum after traumatic spinal cord injury regardless of the degree of plegia. All patients showed a marked increase of levels seven days after injury. IGF-1 serum levels were significantly different from initial measurements at four and nine hours and seven and 14 days after injury, as well as one, two and three months after injury. We did not detect a significant correlation between fracture and the IGF-1 serum level nor between the quantity of operations performed after trauma and the IGF-1 serum level. Patients with clinically documented neurological remission showed consistently higher IGF-1 levels than patients without neurological remission. This data could be the base for the establishment of animal models for further and much needed research in the field of spinal cord injury.


Subject(s)
Insulin-Like Growth Factor I , Spinal Cord Injuries/blood , Spinal Cord Injuries/rehabilitation , Adult , Biomarkers , Female , Humans , Male , Middle Aged , Odds Ratio , Prognosis , ROC Curve , Spinal Cord Injuries/etiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...