Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 12(6): 1703-1710, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28448716

ABSTRACT

K-Ras4B is one of the most frequently mutated Ras isoforms in cancer. The signaling activity of K-Ras4B depends on its localization to the plasma membrane (PM), which is mainly mediated by its polybasic farnesylated C-terminus. On top of the constitutive cycles that maintain the PM enrichment of K-Ras4B, conditional phosphorylation at Ser181 located within this motif has been found to be involved in regulating K-Ras4B's cell distribution and signaling activity. However, discordant observations have undermined our understanding of the role this phosphorylation plays. Here, we report an efficient strategy for producing K-Ras4B simultaneously bearing phosphate, farnesyl, and methyl modifications on a preparative scale, a very useful in vitro system when used in concert with model biomembranes. By using this system, we determined that phosphorylation at Ser181 does not fully inhibit membrane binding and clustering of K-Ras4B but reduces its membrane binding affinity, depending on membrane fluidity. In addition, phosphorylated K-Ras4B maintains tight association with its cytosolic shuttle protein PDEδ. After delivering K-Ras4B containing nonhydrolyzable phosphoserine mimetic into cells, the protein displayed a decreasing PM distribution compared with nonphosphorylable K-Ras4B, implying that phosphorylation might facilitate the dissociation of K-Ras4B from the PM. In addition, phosphorylation does not alter the localization of K-Ras4B in the liquid-disordered lipid subdomains of the membrane but slightly alters the thermotropic properties of K-Ras4B-incorporated membranes probably due to minor differences in membrane partitioning and dynamics. These results provide novel mechanistic insights into the role that phosphorylation at Ser181 plays in regulating K-Ras4B's distribution and activity.


Subject(s)
Cell Membrane/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , Models, Biological , Phosphorylation/physiology , Protein Aggregates , Serine/metabolism
2.
Biophys J ; 111(1): 113-22, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27410739

ABSTRACT

K-Ras4B is a membrane-bound small GTPase with a prominent role in cancer development. It contains a polybasic farnesylated C-terminus that is required for the correct localization and clustering of K-Ras4B in distinct membrane domains. PDEδ and the Ca(2+)-binding protein calmodulin (CaM) are known to function as potential binding partners for farnesylated Ras proteins. However, they differ in the number of interaction sites with K-Ras4B, leading to different modes of interaction, and thus affect the subcellular distribution of K-Ras4B in different ways. Although it is clear that Ca(2+)-bound CaM can play a role in the dynamic spatial cycle of K-Ras4B in the cell, the exact molecular mechanism is only partially understood. In this biophysical study, we investigated the effect of Ca(2+)/CaM on the interaction of GDP- and GTP-loaded K-Ras4B with heterogeneous model biomembranes by using a combination of different spectroscopic and imaging techniques. The results show that Ca(2+)/CaM is able to extract K-Ras4B from negatively charged membranes in a nucleotide-independent manner. Moreover, the data demonstrate that the complex of Ca(2+)/CaM and K-Ras4B is stable in the presence of anionic membranes and shows no membrane binding. Finally, the influence of Ca(2+)/CaM on the interaction of K-Ras4B with membranes is compared with that of PDEδ, which was investigated in a previous study. Although both CaM and PDEδ exhibit a hydrophobic binding pocket for farnesyl, they have different effects on membrane binding of K-Ras4B and hence should be capable of regulating K-Ras4B plasma membrane localization in the cell.


Subject(s)
Calmodulin/metabolism , Cell Membrane/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Amino Acid Sequence , Models, Molecular , Protein Binding , Protein Conformation , Proto-Oncogene Proteins p21(ras)/chemistry
3.
Phys Chem Chem Phys ; 18(13): 8954-62, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26960984

ABSTRACT

In a combined chemical-biological and biophysical approach we explored the membrane partitioning of the lipidated signaling proteins N-Ras and K-Ras4B into membrane systems of different complexity, ranging from one-component lipid bilayers and anionic binary and ternary heterogeneous membrane systems even up to partitioning studies on protein-free and protein-containing giant plasma membrane vesicles (GPMVs). To yield a pictorial view of the localization process, imaging using confocal laser scanning and atomic force microscopy was performed. The results reveal pronounced isoform-specific differences regarding the lateral distribution and formation of protein-rich membrane domains. Line tension is one of the key parameters controlling not only the size and dynamic properties of segregated lipid domains but also the partitioning process of N-Ras that acts as a lineactant. The formation of N-Ras protein clusters is even recorded for almost vanishing hydrophobic mismatch. Conversely, for K-Ras4B, selective localization and clustering are electrostatically mediated by its polybasic farnesylated C-terminus. The formation of K-Ras4B clusters is also observed for the multi-component GPMV membrane, i.e., it seems to be a general phenomenon, largely independent of the details of the membrane composition, including the anionic charge density of lipid headgroups. Our data indicate that unspecific and entropy-driven membrane-mediated interactions play a major role in the partitioning behavior, thus relaxing the need for a multitude of fine-tuned interactions. Such a scenario seems also to be reasonable recalling the high dynamic nature of cellular membranes. Finally, we note that even relatively simple models of heterogeneous membranes are able to reproduce many of the properties of much more complex biological membranes.


Subject(s)
Lipids/chemistry , Lipoproteins/chemistry , Adsorption , Microscopy, Atomic Force , Microscopy, Fluorescence
4.
J Am Chem Soc ; 137(39): 12588-96, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26368315

ABSTRACT

Phospholipases A2 (PLA2) catalyze the hydrolysis reaction of sn-2 fatty acids of membrane phospholipids and are also involved in receptor signaling and transcriptional pathways. Here, we used pressure modulation of the PLA2 activity and of the membrane's physical-chemical properties to reveal new mechanistic information about the membrane association and subsequent enzymatic reaction of PLA2. Although the effect of high hydrostatic pressure (HHP) on aqueous soluble and integral membrane proteins has been investigated to some extent, its effect on enzymatic reactions operating at the water/lipid interface has not been explored, yet. This study focuses on the effect of HHP on the structure, membrane binding and enzymatic activity of membrane-associated bee venom PLA2, covering a pressure range up to 2 kbar. To this end, high-pressure Fourier-transform infrared and high-pressure stopped-flow fluorescence spectroscopies were applied. The results show that PLA2 binding to model biomembranes is not significantly affected by pressure and occurs in at least two kinetically distinct steps. Followed by fast initial membrane association, structural reorganization of α-helical segments of PLA2 takes place at the lipid water interface. FRET-based activity measurements reveal that pressure has a marked inhibitory effect on the lipid hydrolysis rate, which decreases by 75% upon compression up to 2 kbar. Lipid hydrolysis under extreme environmental conditions, such as those encountered in the deep sea where pressures up to the kbar-level are encountered, is hence markedly affected by HHP, rendering PLA2, next to being a primary osmosensor, a good candidate for a sensitive pressure sensor in vivo.


Subject(s)
Biosensing Techniques , Cell Membrane/enzymology , Phospholipases A2/metabolism , Pressure , Models, Molecular , Phospholipases A2/chemistry , Protein Binding , Spectroscopy, Fourier Transform Infrared
5.
Elife ; 42015 Aug 18.
Article in English | MEDLINE | ID: mdl-26284498

ABSTRACT

Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a 'molecular tweezer' specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils. Moreover, CLR01 abrogates semen-mediated enhancement of viral infection by preventing the formation of virion-amyloid complexes and by directly disrupting the membrane integrity of HIV and other enveloped viruses. We establish that CLR01 acts by binding to the target lysine and arginine residues rather than by a non-specific, colloidal mechanism. CLR01 counteracts both host factors that may be important for HIV transmission and the pathogen itself. These combined anti-amyloid and antiviral activities make CLR01 a promising topical microbicide for blocking infection by HIV and other sexually transmitted viruses.


Subject(s)
Amyloid/antagonists & inhibitors , Anti-HIV Agents/pharmacology , Antimetabolites/pharmacology , Bridged-Ring Compounds/pharmacology , Organophosphates/pharmacology , Semen/drug effects , Disease Transmission, Infectious/prevention & control , HIV Infections/prevention & control , HIV Infections/transmission , Humans , Male , Semen/chemistry , Semen/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...