Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Plant Sci ; 28(10): 1132-1143, 2023 10.
Article in English | MEDLINE | ID: mdl-37263916

ABSTRACT

Forest ecosystems with long-lasting human imprints can emerge worldwide as outcomes of land-use cessation. However, the interaction of these anthropogenic legacies with climate change impacts on forests is not well understood. Here, we set out how anthropogenic land-use legacies that persist in forest properties, following alterations in forest distribution, structure, and composition, can interact with climate change stressors. We propose a risk-based framework to identify anthropogenic legacies of land uses in forest ecosystems and quantify the impact of their interaction with climate-related stress on forest responses. Considering anthropogenic land-use legacies alongside environmental drivers of forest ecosystem dynamics will improve our predictive capacity of climate-related risks to forests and our ability to promote ecosystem resilience to climate change.


Subject(s)
Climate Change , Ecosystem , Humans , Forests , Trees
2.
Tree Physiol ; 34(10): 1035-46, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25192884

ABSTRACT

Predicting the large-scale consequences of drought in contrasting environments requires that we understand how drought effects differ among species originating from those environments. A previous meta-analysis of published experiments suggested that the effects of drought on both stomatal and non-stomatal limitations to photosynthesis may vary consistently among species from different hydroclimates. Here, we explicitly tested this hypothesis with two short-term water stress experiments on congeneric mesic and xeric species. One experiment was run in Australia using Eucalyptus species and the second was run in Spain using Quercus species as well as two more mesic species. In each experiment, plants were grown under moist conditions in a glasshouse, then deprived of water, and gas exchange was monitored. The stomatal response was analysed with a recently developed stomatal model, whose single parameter g1 represents the slope of the relationship between stomatal conductance and photosynthesis. The non-stomatal response was partitioned into effects on mesophyll conductance (gm), the maximum Rubisco activity (Vcmax) and the maximum electron transport rate (Jmax). We found consistency among the drought responses of g1, gm, Vcmax and Jmax, suggesting that drought imposes limitations on Rubisco activity and RuBP regeneration capacity concurrently with declines in stomatal and mesophyll conductance. Within each experiment, the more xeric species showed relatively high g1 under moist conditions, low drought sensitivity of g1, gm, Vcmax and Jmax, and more negative values of the critical pre-dawn water potential at which Vcmax declines most steeply, compared with the more mesic species. These results indicate adaptive interspecific differences in drought responses that allow xeric tree species to continue transpiration and photosynthesis for longer during periods without rain.


Subject(s)
Photosynthesis , Plant Leaves/physiology , Trees/physiology , Alnus/physiology , Climate , Dehydration , Eucalyptus/physiology , Fraxinus/physiology , Mesophyll Cells/physiology , Plant Stomata/physiology , Plant Transpiration , Quercus/physiology
3.
New Phytol ; 203(1): 125-39, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24661143

ABSTRACT

We present a unifying model for isoprene emission by photosynthesizing leaves based on the hypothesis that isoprene biosynthesis depends on a balance between the supply of photosynthetic reducing power and the demands of carbon fixation. We compared the predictions from our model, as well as from two other widely used models, with measurements of isoprene emission from leaves of Populus nigra and hybrid aspen (Populus tremula × P. tremuloides) in response to changes in leaf internal CO2 concentration (C(i)) and photosynthetic photon flux density (PPFD) under diverse ambient CO2 concentrations (C(a)). Our model reproduces the observed changes in isoprene emissions with C(i) and PPFD, and also reproduces the tendency for the fraction of fixed carbon allocated to isoprene to increase with increasing PPFD. It also provides a simple mechanism for the previously unexplained decrease in the quantum efficiency of isoprene emission with increasing C(a). Experimental and modelled results support our hypothesis. Our model can reproduce the key features of the observations and has the potential to improve process-based modelling of isoprene emissions by land vegetation at the ecosystem and global scales.


Subject(s)
Carbon Dioxide/metabolism , Hemiterpenes/biosynthesis , Photosynthesis , Populus/physiology , Butadienes , Carbon/metabolism , Models, Biological , Pentanes , Plant Leaves/physiology
4.
Front Plant Sci ; 4: 409, 2013.
Article in English | MEDLINE | ID: mdl-24146668

ABSTRACT

Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit (VPD), xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC), wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines.

SELECTION OF CITATIONS
SEARCH DETAIL
...