Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Org Chem ; 75(15): 4975-82, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20575587

ABSTRACT

The Delta(8)-sphingolipid desaturase from sunflower (Helianthus annuus) converts phytosphinganine into a mixture of Delta(8)-(E)- and -(Z)-phytosphingenines by removal of two syn-hydrogen atoms from anti-, and gauche-conformations of the substrate. With chiral (R)-6-, (S)-6-, (R)-7-, and (S)-7-fluoropalmitic acids the importance of conformations for the formation of (E)- and (Z)-isomers was investigated by using growing yeast cells expressing the desaturase from H. annuus. The fluoropalmitic acids were readily incorporated into a series of fluorinated phytosphinganines. The desaturation products of the major C(18)-fluorophytosphinganine demonstrate that different conformations of the relevant aliphatic segment of the sphingolipids can be exposed to the active center of the enzyme resulting in (E)- or (Z)-fluoroalkenes. The presence of a fluorine atom at the position of the initial hydrogen removal C8-H(R) led to a complete suppression of the desaturation reaction, while replacement of C8-H(S) with fluorine generated a mixture of mainly (Z)- and trace amounts of (E)-fluoroolefine. Fluorine at C9 of the phytosphinganine precursors did not interfere with the initial C-H activation step and produced (E)- and (Z)-fluoroalkenes in the same ratio as observed for the nonfluorinated precursors. Hydroxylated byproducts of the desaturation process were not observed. These results strongly support the importance of conformations of the transition states during desaturation as the relevant criterion for the relative ratio of (E)- and (Z)-alkenes.


Subject(s)
Helianthus/enzymology , Oxidoreductases/chemistry , Palmitic Acids/chemistry , Molecular Probes , Protein Conformation , Stereoisomerism
2.
Plant Physiol ; 149(1): 487-98, 2009 01.
Article in English | MEDLINE | ID: mdl-18978071

ABSTRACT

The role of Delta4-unsaturated sphingolipid long-chain bases such as sphingosine was investigated in Arabidopsis (Arabidopsis thaliana). Identification and functional characterization of the sole Arabidopsis ortholog of the sphingolipid Delta4-desaturase was achieved by heterologous expression in Pichia pastoris. A P. pastoris mutant disrupted in the endogenous sphingolipid Delta4-desaturase gene was unable to synthesize glucosylceramides. Synthesis of glucosylceramides was restored by the expression of Arabidopsis gene At4g04930, and these sphingolipids were shown to contain Delta4-unsaturated long-chain bases, confirming that this open reading frame encodes the sphingolipid Delta4-desaturase. At4g04930 has a very restricted expression pattern, transcripts only being detected in pollen and floral tissues. Arabidopsis insertion mutants disrupted in the sphingolipid Delta4-desaturase At4g04930 were isolated and found to be phenotypically normal. Sphingolipidomic profiling of a T-DNA insertion mutant indicated the absence of Delta4-unsaturated sphingolipids in floral tissue, also resulting in the reduced accumulation of glucosylceramides. No difference in the response to drought or water loss was observed between wild-type plants and insertion mutants disrupted in the sphingolipid Delta4-desaturase At4g04930, nor was any difference observed in stomatal closure after treatment with abscisic acid. No differences in pollen viability between wild-type plants and insertion mutants were detected. Based on these observations, it seems unlikely that Delta4-unsaturated sphingolipids and their metabolites such as sphingosine-1-phosphate play a significant role in Arabidopsis growth and development. However, Delta4-unsaturated ceramides may play a previously unrecognized role in the channeling of substrates for the synthesis of glucosylceramides.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Lysophospholipids/metabolism , Oxidoreductases/metabolism , Sphingosine/analogs & derivatives , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cloning, Molecular , DNA, Bacterial/genetics , Gene Expression Regulation, Plant , Glucosylceramides/biosynthesis , Mutagenesis, Insertional , Open Reading Frames , Oxidoreductases/genetics , Phylogeny , Pichia/genetics , Sequence Deletion , Sphingosine/metabolism
3.
J Biol Chem ; 283(52): 36734-42, 2008 Dec 26.
Article in English | MEDLINE | ID: mdl-18981185

ABSTRACT

Delta3(E)-unsaturated fatty acids are characteristic components of glycosylceramides from some fungi, including also human- and plant-pathogenic species. The function and genetic basis for this unsaturation is unknown. For Fusarium graminearum, which is pathogenic to grasses and cereals, we could show that the level of Delta3-unsaturation of glucosylceramide (GlcCer) was highest at low temperatures and decreased when the fungus was grown above 28 degrees C. With a bioinformatics approach, we identified a new family of polypeptides carrying the histidine box motifs characteristic for membrane-bound desaturases. One of the corresponding genes was functionally characterized as a sphingolipid-Delta3(E)-desaturase. Deletion of the candidate gene in F. graminearum resulted in loss of the Delta3(E)-double bond in the fatty acyl moiety of GlcCer. Heterologous expression of the corresponding cDNA from F. graminearum in the yeast Pichia pastoris led to the formation of Delta3(E)-unsaturated GlcCer.


Subject(s)
Fatty Acid Desaturases/metabolism , Fusarium/enzymology , Gene Expression Regulation, Enzymologic , Amino Acid Motifs , Amino Acid Sequence , Cloning, Molecular , Gene Deletion , Glucosylceramides/chemistry , Histidine/chemistry , Models, Chemical , Molecular Sequence Data , Peptides/chemistry , Pichia/metabolism , Sequence Homology, Amino Acid , Temperature
4.
Plant Physiol ; 144(4): 1968-77, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17600137

ABSTRACT

Three plant cDNA libraries were expressed in yeast (Saccharomyces cerevisiae) and screened on agar plates containing toxic concentrations of aluminum. Nine cDNAs were isolated that enhanced the aluminum tolerance of yeast. These cDNAs were constitutively expressed in Arabidopsis (Arabidopsis thaliana) and one cDNA from the roots of Stylosanthes hamata, designated S851, conferred greater aluminum tolerance to the transgenic seedlings. The protein predicted to be encoded by S851 showed an equally high similarity to Delta6 fatty acyl lipid desaturases and Delta8 sphingolipid desaturases. We expressed other known Delta6 desaturase and Delta8 desaturase genes in yeast and showed that a Delta6 fatty acyl desaturase from Echium plantagineum did not confer aluminum tolerance, whereas a Delta8 sphingobase desaturase from Arabidopsis did confer aluminum tolerance. Analysis of the fatty acids and sphingobases of the transgenic yeast and plant cells demonstrated that S851 encodes a Delta8 sphingobase desaturase, which leads to the accumulation of 8(Z/E)-C(18)-phytosphingenine and 8(Z/E)-C(20)-phytopshingenine in yeast and to the accumulation of 8(Z/E)-C(18)-phytosphingenine in the leaves and roots of Arabidopsis plants. The newly formed 8(Z/E)-C(18)-phytosphingenine in transgenic yeast accounted for 3 mol% of the total sphingobases with a 8(Z):8(E)-isomer ratio of approximately 4:1. The accumulation of 8(Z)-C(18)-phytosphingenine in transgenic Arabidopsis shifted the ratio of the 8(Z):8(E) isomers from 1:4 in wild-type plants to 1:1 in transgenic plants. These results indicate that S851 encodes the first Delta8 sphingolipid desaturase to be identified in higher plants with a preference for the 8(Z)-isomer. They further demonstrate that changes in the sphingolipid composition of cell membranes can protect plants from aluminum stress.


Subject(s)
Aluminum/metabolism , Fabaceae/enzymology , Oxidoreductases/metabolism , Sphingosine/analogs & derivatives , Arabidopsis/genetics , Arabidopsis/metabolism , DNA, Complementary , Fabaceae/genetics , Fabaceae/metabolism , Genes, Plant , Plants, Genetically Modified/metabolism , Saccharomyces cerevisiae/genetics , Sphingosine/metabolism
5.
J Plant Physiol ; 164(2): 146-56, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16500724

ABSTRACT

Cold acclimation of plants affects many aspects of metabolism. Changes in plasma membrane lipids have always been considered to be important for development of frost resistance and survival at subzero temperatures. We studied different cultivars of winter wheat (Triticum aestivum L.) that differed in frost resistance induced either by cold acclimation or treatment with the plant hormone abscisic acid (ABA). Plasma membranes were isolated from non-acclimated and cold- as well as from ABA-acclimated plants, and were subjected to detailed lipid analysis. Cold acclimation affected virtually all plasma membrane lipid components and their constituents, resulting in both increases and decreases, which varied between the three groups of plants investigated. Including the cold-induced variations observed in the few plant species studied in detail previously, cerebrosides were the only components reduced by cold acclimation in all plants. In wheat, more uniform and consistent patterns were obtained when considering colligative parameters such as total free sterols, phospholipids or glycolipids, either as the proportion of total lipids or based on plasma membrane protein. The parameter which changed most significantly in parallel to the increase of inducible frost resistance in the three groups of plants was the ratio of free sterols/glycolipids, which increased. ABA treatment resulted in qualitatively similar effects in only one cultivar, but in general these changes were less pronounced. Compared to changes in transcription rates of several cold-induced genes and in the concentration of various compatible solutes reported for other plants, the observed changes in plasma membrane lipids are minor ones. This may indicate that acclimation-induced changes can be accomplished by posttranscriptional regulation of enzymatic activities, which is in agreement with the failure to detect significant changes in transcription of the corresponding genes during cold induction.


Subject(s)
Abscisic Acid/physiology , Acclimatization/physiology , Membrane Lipids/metabolism , Seedlings/physiology , Triticum/physiology , Cold Temperature , Membrane Lipids/chemistry , Seedlings/metabolism , Triticum/metabolism
6.
J Biol Chem ; 281(9): 5582-92, 2006 Mar 03.
Article in English | MEDLINE | ID: mdl-16339149

ABSTRACT

Fungal glucosylceramides play an important role in plant-pathogen interactions enabling plants to recognize the fungal attack and initiate specific defense responses. A prime structural feature distinguishing fungal glucosylceramides from those of plants and animals is a methyl group at the C9-position of the sphingoid base, the biosynthesis of which has never been investigated. Using information on the presence or absence of C9-methylated glucosylceramides in different fungal species, we developed a bioinformatics strategy to identify the gene responsible for the biosynthesis of this C9-methyl group. This phylogenetic profiling allowed the selection of a single candidate out of 24-71 methyltransferase sequences present in each of the fungal species with C9-methylated glucosylceramides. A Pichia pastoris knock-out strain lacking the candidate sphingolipid C9-methyltransferase was generated, and indeed, this strain contained only non-methylated glucosylceramides. In a complementary approach, a Saccharomyces cerevisiae strain was engineered to produce glucosylceramides suitable as a substrate for C9-methylation. C9-methylated sphingolipids were detected in this strain expressing the candidate from P. pastoris, demonstrating its function as a sphingolipid C9-methyltransferase. The enzyme belongs to the superfamily of S-adenosylmethionine-(SAM)-dependent methyltransferases and shows highest sequence similarity to plant and bacterial cyclopropane fatty acid synthases. An in vitro assay showed that sphingolipid C9-methylation is membrane-bound and requires SAM and Delta4,8-desaturated ceramide as substrates.


Subject(s)
Fungal Proteins/classification , Fungal Proteins/metabolism , Glucosylceramides , Methyltransferases/classification , Methyltransferases/metabolism , Sphingolipids , Amino Acid Sequence , Animals , Computational Biology , Fungal Proteins/genetics , Glucosylceramides/chemistry , Glucosylceramides/metabolism , Methyltransferases/genetics , Molecular Sequence Data , Molecular Structure , Phylogeny , Pichia/enzymology , Pichia/genetics , Sequence Alignment , Sphingolipids/chemistry , Sphingolipids/metabolism
7.
J Plant Physiol ; 163(1): 26-38, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16360801

ABSTRACT

The plasma membrane is most likely the major target for sensing of aluminium (Al), leading to inhibition of plant root-growth. As a result of high external Al, alterations in plasma membrane composition may be expected in order to maintain its properties. As sphingolipids are characteristic components of this membrane, their involvement in membrane adjustment to increased Al concentrations was investigated. Heterologous expression of a stereounselective long-chain base (LCB) (8E/Z)-desaturase from Arabidopsis thaliana, Brassica napus and Helianthus annuus in Saccharomyces cerevisiae improved the Al resistance of the transgenic yeast cells. This encouraged us to investigate whether Al affects the LCB composition, and whether genetic engineering of the LCB profile modifies the Al resistance of the Al-sensitive plant species maize (Zea mays, L.). Constitutive expression of the LCB (8E/Z)-desaturase from Arabidopsis thaliana in maize roots led to an 8- to 10-fold increase in (8E)-4-hydroxysphing-8-enine in total roots. Less marked but similar changes were observed in 3 mm root apices. Al treatment of the Al-sensitive maize cv Lixis resulted in a significant increase in the proportion of (8Z)-LCB and in the content of total LCBs in root tips, which was not observed in the Al-resistant cv ATP-Y. When root tips of transgenic plants were exposed to Al, only minor changes of both (8Z)- and (8E)-unsaturated LCBs as well as of the total LCB were observed. Al treatment of the wild type parental line H99 decreased the (8Z)-unsaturated LCBs and the total LCB content. Based on Al-induced callose production, a marker for Al sensitivity, the parental line H99 was as Al-resistant as cv ATP-Y, whereas the transgenic line became as sensitive as cv Lixis. Taken together, these data suggest that, in particular, the loss of the ability to down-regulate the proportion of (8Z)-unsaturated LCBs may be related to increased Al sensitivity.


Subject(s)
Aluminum/toxicity , Oxidoreductases/metabolism , Saccharomyces cerevisiae/drug effects , Sphingolipids/physiology , Zea mays/drug effects , Arabidopsis/genetics , Base Composition , Brassica napus/genetics , Drug Resistance , Gene Expression , Genotype , Helianthus/genetics , Oxidoreductases/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Zea mays/genetics , Zea mays/physiology
8.
Plant Physiol Biochem ; 43(12): 1031-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16386430

ABSTRACT

Long-chain sphingobases have been analyzed in various fractions prepared from different organs (leaf, root, storage tissue) from five dicotyledoneous plants (Arabidopsis thaliana, Brassica oleracea, Nicotiana tabacum, Pisum sativum, Spinacia oleracea). The resulting sphingobase profiles from cerebrosides and plasma membranes (PMs) show large qualitative and quantitative differences. Assuming that cerebrosides from all cellular membranes have similar sphingobase profiles, these data suggest that cerebrosides, considered to be characteristic glycolipids of plant PMs and specified by large proportions of sphingobases with an 8Z-double bond motif, do not represent the major sphingolipids of PMs. The fraction of unidentified complex sphingolipids, containing mainly 8E-phytosphingenine, exceeds the cerebroside proportion in PMs by several factors and may be as abundant as diacylglycerol-based phospholipids. These results are discussed with respect to the distribution of various lipids between the bilayer halves of plant PM.


Subject(s)
Cell Membrane/chemistry , Glucosylceramides/chemistry , Plants/chemistry , Sphingolipids/chemistry , Plant Roots/chemistry
9.
J Lipid Res ; 45(10): 1899-909, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15292371

ABSTRACT

In algae, the biosynthesis of docosahexaenoic acid (22:6omega3; DHA) proceeds via the elongation of eicosapentaenoic acid (20:5omega3; EPA) to 22:5omega3, which is required as a substrate for the final Delta4 desaturation. To isolate the elongase specific for this step, we searched expressed sequence tag and genomic databases from the algae Ostreococcus tauri and Thalassiosira pseudonana, from the fish Oncorhynchus mykiss, from the frog Xenopus laevis, and from the sea squirt Ciona intestinalis using as a query the elongase sequence PpPSE1 from the moss Physcomitrella patens. The open reading frames of the identified elongase candidates were expressed in yeast for functional characterization. By this, we identified two types of elongases from O. tauri and T. pseudonana: one specific for the elongation of (Delta6-)C18-PUFAs and one specific for (Delta5-)C20-PUFAs, showing highest activity with EPA. The clones isolated from O. mykiss, X. laevis, and C. intestinalis accepted both C18- and C20-PUFAs. By coexpression of the Delta6- and Delta5-elongases from T. pseudonana and O. tauri, respectively, with the Delta5- and Delta4-desaturases from two other algae we successfully implemented DHA synthesis in stearidonic acid-fed yeast. This may be considered an encouraging first step in future efforts to implement this biosynthetic sequence into transgenic oilseed crops.


Subject(s)
Acetyltransferases/metabolism , Docosahexaenoic Acids/metabolism , Acetyltransferases/chemistry , Acetyltransferases/isolation & purification , Animals , Bryopsida/enzymology , Ciona intestinalis/enzymology , Cloning, Molecular , Docosahexaenoic Acids/chemistry , Eukaryota/enzymology , Evolution, Molecular , Fatty Acid Elongases , Fatty Acids, Unsaturated/metabolism , Methods , Oncorhynchus mykiss/metabolism , Phylogeny , Sequence Alignment , Substrate Specificity , Xenopus laevis/metabolism , Yeasts/genetics
10.
Org Biomol Chem ; 1(14): 2448-54, 2003 Jul 21.
Article in English | MEDLINE | ID: mdl-12956060

ABSTRACT

The stereochemical course of the dihydroceramide delta 4-(E)-desaturase from Candida albicans, cloned and expressed in the yeast Saccharomyces cerevisiae strain sur2 delta, was determined using stereospecifically labelled (2R,3S)-[2,3,4,4-2H4]-palmitic acid as a metabolic probe. Mass spectrometric analysis of the dinitrophenyl-derivatives of the labelled long-chain bases revealed elimination of a single deuterium atom from C(4) (corresponding to the C(4)-HR) along with a hydrogen atom from C(5) (corresponding to the C(5)-HS). This finding is consistent with an overall syn-elimination of the two vicinal hydrogen atoms. Besides the desaturation product sphingosine (93%) minor amounts of a 4-hydroxylated product (phytosphinganine, 7%) were identified that classify the Candida enzyme as a bifunctional desaturase/hydroxylase. Both processes, desaturation and hydroxylation proceed with loss of C(4)-HR from the chiral precursor. This finding is in agreement with a two-step process involving activation of the substrate by removal of the C(4)-HR to give a C-centred radical or radicaloid followed by either disproportionation into an olefin, water and a reduced diiron complex, or to recombination of the primary reactive intermediate with an active site-bound oxygen to yield a secondary alcohol. This result demonstrates the close mechanistic relationship between desaturation and hydroxylation as two different reaction pathways of a single enzyme and strengthens the mechanistic relationship of desaturases from fatty acid metabolism and sphingolipids.


Subject(s)
Candida albicans/enzymology , Hydrolases/chemistry , Hydrolases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Sphingolipids/metabolism , Dinitrophenols/chemistry , Dinitrophenols/metabolism , Hydrolases/genetics , Hydrolysis , Hydroxylation , Oxidation-Reduction , Oxidoreductases/genetics , Palmitic Acid/chemistry , Palmitic Acid/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spectrometry, Mass, Electrospray Ionization , Sphingosine/analogs & derivatives , Sphingosine/analysis , Sphingosine/metabolism , Stereoisomerism , Tritium
12.
Biochim Biophys Acta ; 1632(1-3): 1-15, 2003 Jun 10.
Article in English | MEDLINE | ID: mdl-12782146

ABSTRACT

In mammals and Saccharomyces cerevisiae, sphingolipids have been a subject of intensive research triggered by the interest in their structural diversity and in mammalian pathophysiology as well as in the availability of yeast mutants and suppressor strains. More recently, sphingolipids have attracted additional interest, because they are emerging as an important class of messenger molecules linked to many different cellular functions. In plants, sphingolipids show structural features differing from those found in animals and fungi, and much less is known about their biosynthesis and function. This review focuses on the sphingolipid modifications found in plants and on recent advances in the functional characterization of genes gaining new insight into plant sphingolipid biosynthesis. Recent studies indicate that plant sphingolipids may be also involved in signal transduction, membrane stability, host-pathogen interactions and stress responses.


Subject(s)
Plants/chemistry , Sphingolipids/chemistry , Sphingolipids/metabolism , Animals , Mutation , Phylogeny , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Signal Transduction , Sphingolipids/genetics , Suppression, Genetic
14.
J Biotechnol ; 90(2): 73-94, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12069195

ABSTRACT

The Collaborative Research Center (CRC) 436 'Metal-Mediated Reactions Modeled after Nature' was founded for the express purpose of analyzing the catalytic principles of metallo-enzymes in order to construct efficient catalysts on a chemical basis. The structure of the active center and neighboring chemical environment in enzymes serves as a focal point for developing reactivity models for the chemical redesign of catalysts. Instead of simply copying enzyme construction, we strive to achieve new chemical intuition based on the results of long-lasting natural evolution. We hope for success, since nature uses a limited set of building blocks, whereas we can apply the full repertoire of chemistry. Key substrates in this approach are small molecules, such as CO2, O2 NO3- and N2. Nature complexes these substrates, activates them and performs chemical transformations--all within the active center of a metalloenzyme. In this article, we report on some aspects and first results of the Collaborative Research Center (CRC) 436, such as nitrate reductase, sphingolipid desaturase, carbonic anhydrase, leucine aminopeptidase and dopamine beta-monooxygenase.


Subject(s)
Enzymes/chemical synthesis , Enzymes/metabolism , Metals/chemistry , Metals/metabolism , Models, Chemical , Molecular Mimicry , Animals , Catalysis , Cattle , Models, Molecular , Molecular Conformation , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , Substrate Specificity
15.
J Biol Chem ; 277(28): 25512-8, 2002 Jul 12.
Article in English | MEDLINE | ID: mdl-11937514

ABSTRACT

Sphingolipids desaturated at the Delta4-position are important signaling molecules in many eukaryotic organisms, including mammals. In a bioinformatics approach, we now identified a new family of protein sequences from animals, plants, and fungi and characterized these sequences biochemically by expression in Saccharomyces cerevisiae. This resulted in the identification of the enzyme sphingolipid Delta4-desaturase (dihydroceramide desaturase) from Homo sapiens, Mus musculus, Drosophila melanogaster, and Candida albicans, in addition to a bifunctional sphingolipid Delta4-desaturase/C-4-hydroxylase from M. musculus. Among the sequences investigated are the Homo sapiens membrane lipid desaturase, the M. musculus degenerative spermatocyte, and the Drosophila melanogaster degenerative spermatocyte proteins. During spermatogenesis, but not oogenesis of des mutant flies, both cell cycle and spermatid differentiation are specifically blocked at the entry into the first meiotic division, leading to male sterility. This mutant phenotype can be restored to wild-type by complementation with a functional copy of the des gene (Endo, K., Akiyama, T., Kobayashi S., and Okada, M. (1996) Mol. Gen. Genet. 253, 157-165). These results suggest that Delta4-desaturated sphingolipids provide an early signal necessary to trigger the entry into both meiotic and spermatid differentiation pathways during Drosophila spermatogenesis.


Subject(s)
Oxidoreductases/chemistry , Animals , Base Sequence , Chromatography, High Pressure Liquid , DNA Primers , Humans , Male , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/physiology , Phylogeny , Spermatogenesis/physiology , Sphingolipids/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...