Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 23(2): 330-340, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36597964

ABSTRACT

Magnetic beads have been widely and successfully used for target enrichment in life science assays. There exists a large variety of commercially available magnetic beads functionalized for specific target capture, as well as options that enable simple surface modifications for custom applications. While magnetic beads are ideal for use in the macrofluidic context of typical laboratory workflows, their performance drops in microfluidic contexts, such as consumables for point-of-care diagnostics. A primary cause is the diffusion-limited analyte transport in these low Reynolds number environments. A new method, BeadPak, uses magnetically actuatable microposts to enhance analyte transport, improving yield of the desired targets. Critical parameters were defined for the operation of this technology and its performance characterized in canonical life-science assays. BeadPak achieved up to 1000× faster capture than a microfluidic chamber relying on diffusion alone, enabled a significant specimen concentration via volume reduction, and demonstrated compatibility with a range of biological specimens. The results shown in this work can be extended to other systems that utilize magnetic beads for target capture, concentration, and/or purification.


Subject(s)
Microfluidic Analytical Techniques , Workflow , Microfluidics/methods , Immunomagnetic Separation , Magnetic Phenomena
2.
Rev Sci Instrum ; 86(2): 023711, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25725856

ABSTRACT

In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.


Subject(s)
Biocompatible Materials , Mechanical Phenomena , Microscopy/instrumentation , Calibration , Equipment Design , Hyaluronic Acid , Rheology , Software
3.
Lab Chip ; 15(5): 1385-93, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25592158

ABSTRACT

We present a novel technology for microfluidic elastometry and demonstrate its ability to measure stiffness of blood clots as they form. A disposable micro-capillary strip draws small volumes (20 µL) of whole blood into a chamber containing a surface-mounted micropost array. The posts are magnetically actuated, thereby applying a shear stress to the blood clot. The posts' response to magnetic field changes as the blood clot forms; this response is measured by optical transmission. We show that a quasi-static model correctly predicts the torque applied to the microposts. We experimentally validate the ability of the system to measure clot stiffness by correlating our system with a commercial thromboelastograph. We conclude that actuated surface-attached post (ASAP) technology addresses a clinical need for point-of-care and small-volume elastic haemostatic assays.


Subject(s)
Blood Coagulation , Microfluidic Analytical Techniques/instrumentation , Humans , Magnetics , Rheology , Stress, Mechanical , Surface Properties
4.
Biophys J ; 101(4): 943-50, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21843486

ABSTRACT

A clot's function is to achieve hemostasis by resisting fluid flow. Permeability is the measurement of a clot's hemostatic potential. It is sensitive to a wide range of biochemical parameters and pathologies. In this work, we consider the hydrodynamic phenomenon that reduces the mobility of fluid near the fiber surfaces. This no-slip boundary condition both defines the gel's permeability and suppresses nanoparticle diffusion in gel interstices. Here we report that, unlike previous work where steric effects also hindered diffusion, our system-nanoparticles in fibrin gel-was subject exclusively to hydrodynamic diffusion suppression. This result enabled an automated, high-throughput permeability assay that used small clot volumes. Permeability was derived from nanoparticle diffusion using the effective medium theory, and showed one-to-one correlation with measured permeability. This technique measured permeability without quantifying gel structure, and may therefore prove useful for characterizing similar materials (e.g., extracellular matrix) where structure is uncontrolled during polymerization and difficult to measure subsequently. We also report that PEGylation reduced, but did not eliminate, the population of immobile particles. We studied the forces required to pull stuck PEG particles free to confirm that the attachment is a result of neither covalent nor strong electrostatic binding, and discuss the relevance of this force scale to particle transport through physiological clots.


Subject(s)
Blood Coagulation/physiology , Diffusion , Nanoparticles/chemistry , Fibrin/metabolism , Gels/chemistry , Humans , Microspheres , Permeability , Polyethylene Glycols/chemistry , Stress, Mechanical , Time Factors
5.
Rev Sci Instrum ; 79(8): 083707, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19044357

ABSTRACT

In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles approximately 0.1-10 mum) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of F approximately r(-2.7+/-0.1). We employ this system to measure the stiffness of SR2+ Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments.


Subject(s)
Biocompatible Materials/chemistry , Cells/cytology , Magnetics/instrumentation , Micromanipulation/instrumentation , Polymers/chemistry , Animals , Calibration , Cells, Cultured , Drosophila/cytology , Equipment Design , Micromanipulation/methods , Microscopy, Video , Microspheres , Miniaturization , Physical Phenomena , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...