Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 191: 114997, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37148588

ABSTRACT

In this study, we surveyed the presence of personal protective equipment (PPE) waste on the streets of Bogotá-Colombia, Lima-Perú, and Mar del Plata-Argentina. Furthermore, this work is also focused on the release capacity of Ag, Cu, and Zn metals associated with nanoparticles, and microplastics (MPs) from textile face masks (TFMs) and disposable face masks. According to our results, an association between low-income areas and PPE waste was found, which may be related to the periodicity of waste collection and economic activity. Polymers, like polypropylene, cotton-polyester, and additives, such as CaCO3, MgO, and Ag/Cu as nanoparticles, were identified. TFMs released high levels of Cu (35,900-60,200 µg·L-1), Zn (2340-2380 µg·L-1), and MPs (4528-10,640 particles/piece). Metals associated with nanoparticles leached by face masks did not present any antimicrobial activity against P. aeruginosa. Our study suggests that TFMs may leach large amounts of polluting nano/micromaterials in aquatic environments with potential toxicological effects on organisms.


Subject(s)
Metals, Heavy , Nanoparticles , Microplastics , Masks , Plastics , Cities , Metals, Heavy/analysis , Personal Protective Equipment , South America
2.
Mar Environ Res ; 186: 105898, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36780804

ABSTRACT

Climatic variability and anthropogenic pressures impact the structure and dynamics of pelagic ecosystems and copepods are good indicators of such changes. This investigation aims to explore the interannual pattern of the mesozooplankton community, in relation to environmental variables in the Bahía Blanca Estuary during winter-spring from last two decades focusing on the dominant species Eurytemora americana. Main changes recorded include increased temperature, alteration of the nutrient balance, a decrease in chlorophyll-a, modifications in the abundance-structure of the phytoplankton assemblages, and changes in the abundance-structure of the mesozooplankton community. A significant decrease was observed in species richness of the mesozooplankton over time. Alterations in abundance and reproductive traits of E. americana, were also found. The population of E. americana dropped from mean relative abundance of 47% in first years to 20-12% in lasts one, accompanied with an increase of copepod species characterized by higher trophic plasticity in eutrophic conditions, like Acartia tonsa and Euterpina acutifrons.


Subject(s)
Copepoda , Zooplankton , Animals , Ecosystem , Sentinel Species , Chlorophyll A
3.
J Hazard Mater ; 440: 129737, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35988489

ABSTRACT

In this study, the influence of the plastisphere on metals accumulation and weathering processes of polystyrene (PSMPs) and nylon microplastics (NyMPs) in polluted waters during a 129 day-assay were studied. MPs were characterized through scanning electron microscopy (SEM) with Energy dispersive X-ray (EDX), X-ray diffraction (XRD), attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectroscopy, contact angle, and thermogravimetric analysis (TGA). Also Cr, Mn, Zn, Cd, Pb, and Cu in the plastisphere on MPs were analyzed during the assay. Potentially pathogenic Vibrio, Escherichia coli, and Pseudomonas spp. were abundant in both MPs. Ascomycota fungi (Phona s.l., Alternaria sp., Penicillium sp., and Cladosporium sp.), and yeast, were also identified. NyMPs and PSMPs exhibited a decrease in the contact angle and increased their weights. SEM/EDX showed weathering signs, like surface cracks and pits, and leaching TiO2 pigments from NyMPs after 42 days. XRD displayed a notorious decrease in NyMPs crystallinity, which could alter its interaction with external contaminants. Heavy metal accumulation on the plastisphere formed on each type of MPs increased over the exposure time. After 129 days of immersion, metals concentrations in the plastisphere on MPs were in the following order Cr ˃ Mn ˃ Zn ˃ Cu ˃ Pb ˃ Cd, demonstrating how the biofilm facilitates metal mobilization. The results of this study lead to a better understanding of the impact of marine plastic debris as vectors of pathogens and heavy metals in coastal environments.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium/analysis , Lead , Metals, Heavy/analysis , Microplastics , Nylons , Plastics/chemistry , Polystyrenes/analysis , Water Pollutants, Chemical/chemistry
4.
Sci Total Environ ; 837: 155631, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35508238

ABSTRACT

Synthetic microdebris (particles of <5 mm) are a worldwide concern because they can affect the community structure of the aquatic ecosystems, organisms, and even food webs. For the biomonitoring of synthetic microdebris (especially microplastics, MPs), mainly benthic invertebrates are used, but crabs have been less studied in the literature. We studied the synthetic microdebris contamination in water, sediments, and three representative intertidal crabs (Neohelice granulata, Cyrtograpsus angulatus and Leptuca uruguayensis) with different lifestyles from the Bahía Blanca estuary, Argentina. The results obtained show the presence of cotton-polyamide (PA), polyethylene (PE), and polyethylene terephthalate (PET) in surface waters. In sediments, we identified cellulose modified (CE), polyester (PES), polyethylene (PE), and alkyd resin, while in crabs, cotton-PA and CE were the predominant ones. The MPs abundance ranged from 8 to 68 items L-1 in surface water, from 971 to 2840 items Kg-1 in sediments, and from 0 to 2.58 items g-1 ww for the three species of crabs. Besides, paint sheets ranged from 0 to 17 in the total samples, with Cr, Mo, Ti, Pb, Cu, Al, S, Ba and Fe on their surface. There were significant differences between the microdebris abundances in the abiotic matrices but not among crabs species. The ecological traits of the different crabs helped to understand the accumulation of synthetic microdebris, an important characteristic when determining the choice of a good biomonitor.


Subject(s)
Brachyura , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring/methods , Estuaries , Geologic Sediments , Plastics , Polyethylenes , Sentinel Species , Water , Water Pollutants, Chemical/analysis
5.
Mar Pollut Bull ; 174: 113276, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35090270

ABSTRACT

A wide range of contaminants of emerging concern such as micro/nanoplastics (MPs/PNPs) and metal-nanoparticles (Me-NPs) from anthropogenic activities have been identified in aquatic environments. The hazardous effects of these micro/nanomaterials as pollutants in organisms and the lack of knowledge about their behavior in aquatic environments have generated growing concern in the scientific community. The nanomaterials have a colloidal-type behavior due to their size range but with differences in their physicochemical properties. This review comprises the behavior of micro/nanomaterials pollutants and the physicochemical interactions between MPs/PNPs and Me-NPs in aquatic environments, and their potential toxicological effects in organisms. Moreover, this article describes the potential use of Me-NPs to remove MPs/PNPs present in the water column due to their photocatalytic and magnetic properties. It also discusses the challenge to determine harmful effects of micro/nanomaterials pollutants in organisms and provides future research directions to improve integrated management strategies to mitigate their environmental impact.


Subject(s)
Environmental Pollutants , Metal Nanoparticles , Nanostructures , Water Pollutants, Chemical , Anthropogenic Effects , Metal Nanoparticles/toxicity , Nanostructures/toxicity , Water Pollutants, Chemical/toxicity
6.
Mar Pollut Bull ; 173(Pt B): 113023, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34695691

ABSTRACT

This study assesses for the first time the concentrations of microplastics (MPs) in sediments, water and two human-consumed mussels with different ecological traits (Amarilladesma mactroides and Brachidontes rodriguezii) in a touristic sandy beach of Argentina. MPs were characterized through FTIR and SEM/EDX techniques. All the samples presented MPs with similar concentrations as other human-impacted coastal areas of the world, being black and blue fibers of < 0.5 and 0.5-1 mm the most abundant. SEM images exhibited cracks and fractures with clay minerals and microorganisms adhered to MPs surface. EDX spectrums showed potentially toxic elements, such as Cr, Ti, and Mo. FTIR identified polymers such as cellulose, polyamides, and polyacrylates in most of the samples analyzed. Our study demonstrates that microplastic pollution is a common threat to sandy beaches in Argentina, worsened by plastic particles carrying metal ions with potential toxic effects to the biota, including A. mactroides, an endangered species.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Argentina , Environmental Monitoring , Geologic Sediments , Humans , Microplastics , Plastics , Water , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 785: 147141, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33933772

ABSTRACT

Microplastics have been a global concern due to their potential and widespread risks to organisms and environments. In this study, we investigated the abundance, distribution, and characteristics of microplastics (MPs) in the surface waters of the Bahía Blanca Estuary (BBE), specifically in its inner and middle zone. The results showed the dominant shape of MPs were fibers, being black, transparent, and blue the main colors. The concentrations of MPs ranged from 182 to 33,373 items m-3 with a mean value of 6162 items m-3. The highest concentrations of MPs were detected in the middle zone of the estuary, a site that receives untreated sewage effluents from the city. The most abundant size ranges were from 0.5 to 1.5 mm (44.21%) and ˂0.5 mm (40.21%) and were predominant at all the sampling sites. The concentration of mesoplastics in the inner zone (16 items m-3) presented larger values than in the middle zone (5 items m-3). A wide variety of polymeric materials with predominance of microfibers such as cellulose-based, polyacrylonitrile, polyethylene terephthalate, and polypropylene were identified. Polyester/alkyd resins and poli(vinyl chloride) were also found. The analysis of MPs surface through SEM/EDX detected a variety of elements such as C, O, Si, Al, K, Ca, Cl, Ti, Fe, S, and P, indicating potential contaminant carriers in the water column. Some plastic particles presented a high degree of degradation on their surface morphology. Untreated sewage discharges appear to be a significant input of MPs. Therefore, the results provided in the present study should be considered by stakeholders interested in the management and conservation of this large coastal wetland with significant ecological and economic value.

8.
Mar Pollut Bull ; 165: 112093, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33611229

ABSTRACT

The contamination of estuaries by heavy metals from anthropogenic activities in the industrial, domestic, and agricultural sectors is a global concern. In this study, the Cr, Fe, and Mn levels in the suspended particulate matter (SPM) were analyzed in estuarine waters from Bahia Blanca Estuary, during 2014-2015. The values of particulate Cr ranged from 7.33 to 35.20 µg g-1, which could be associated to several anthropogenic sources. The positive correlations found between Cr and Chlorophyll-a, and Cr and particulate organic carbon (POC) suggest the strong influence of phytoplankton on the adsorption of this metal and on the increase of particulate Cr. Negative correlations were found between Cr and DO and between Cr and pH, which could indicate an increasing trend in the dissolved form of Cr. This study suggests that the physical-chemical characteristics of the water column as well as phytoplankton and POC dynamics influence the behavior of Cr in this estuary.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Argentina , Brazil , Chromium , Environmental Monitoring , Estuaries , Geologic Sediments , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 763: 144365, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33360513

ABSTRACT

The propagation of the COVID-19 pandemic worldwide has been alarming in the last months. According to recommendations of the World Health Organization (WHO), the use of face masks is essential for slowing down the transmission rate of COVID-19 in human beings. This pandemic has generated a substantial increase in the use, as well as in the production, of face masks and other elements (gloves, face protectors, protective suits, safety shoes) manufactured with polymeric materials, including antiviral textiles most of which will end as microplastic pools. Focusing on South America, the use and mismanagement of this type of personal protective equipment (PPE) represents an environmental problem. Added to this issue are the increase in the use of single-use plastic, and the reduction of plastic recycling due to the curfew generated by the pandemic, further aggravating plastic pollution on coasts and beaches. Recently, researchers have developed antiviral polymeric textile technology composed of Ag and Cu nanoparticles for PPE to reduce the contagion and spread of COVID-19. Antiviral polymeric textile wastes could also have long-term negative repercussions on aquatic environments, as they are an important emerging class of contaminants. For this reason, this work provides reflections and perspectives on how the COVID-19 pandemic can aggravate plastic pollution on beaches and coastal environments, consequently increasing the damage to marine species in the coming years. In addition, the potential impact of the pandemic on waste management systems is discussed here, as well as future research directions to improve integrated coastal management strategies.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Pandemics , Plastics , SARS-CoV-2 , South America/epidemiology , Textiles
10.
Sci Total Environ ; 754: 142413, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33254940

ABSTRACT

The composition and the interaction of the suspended particulate matter (SPM) with metal ions, along with the presence and characteristics of microplastics, were analyzed for the first time in the water column of the inner zone of Bahía Blanca Estuary during winter (June, July, and August) 2019. Surface analysis techniques (Scanning Electron Microscopy combined with Energy Dispersive X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray Diffraction) were employed to obtain an in-depth characterization of the particulate matter, suggesting the presence of Fe in our samples, with a mixture of Fe3+/Fe2+ oxidation states. Microplastics ranged in concentrations between 3 and 11.5 items L-1, with an average of 6.50 items L-1 (S.E: ±4.01), being fibers the most abundant type. Infrared Spectroscopy suggests that these fibers correspond to semi-synthetic cellulose-based and poly(amide) remains. We concluded that the SPM is a significant vehicle for metals which might have adverse effects on marine organisms.

11.
Mar Pollut Bull ; 91(2): 491-505, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25909095

ABSTRACT

The aim of this work is to assess the physicochemical conditions of the supratidal sediments colonized by microbial mats at two sites from Rosales Harbor (Bahía Blanca Estuary, Argentina) close to sewage discharge. Both sites differed in the size grain. No differences in pH, Eh and temperature were observed. Moisture retention and chlorophyll a concentration were significantly different between sites and sediment layers. Heavy metals and organic matter content were significantly higher in SII. No statistical differences were found in porewater nutrients concentration, being higher in SI (except DSi). The presence of Escherichia coli in water and sediment (1000 CFU/100 mL - uncountable and 35-40 CFU g(-1) dw, respectively) evidenced microbial contamination in the study area. The relationships between the physicochemical parameters evaluated and the influence of the sewage discharge allow defining two different areas in the Rosales Harbor despite the proximity and the presence of microbial mats.


Subject(s)
Estuaries , Sewage , Water Pollution/analysis , Argentina , Chlorophyll/analysis , Chlorophyll A , Environmental Pollution , Escherichia coli/isolation & purification , Geologic Sediments/microbiology , Hydrogen-Ion Concentration , Metals, Heavy/analysis , Temperature , Water Microbiology , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...