Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38568410

ABSTRACT

Titanium dioxide (TiO2) is a well-known material for its biomedical applications, among which its implementation as a photosensitizer in photodynamic therapy has attracted considerable interest due to its photocatalytic properties, biocompatibility, high chemical stability, and low toxicity. However, the photoactivation of TiO2 requires ultraviolet light, which may lead to cell mutation and consequently cancer. To address these challenges, recent research has focused on the incorporation of metal dopants into the TiO2 lattice to shift the band gap to lower energies by introducing allowed energy states within the band gap, thus ensuring the harnessing of visible light. This study presents the synthesis, characterization, and application of TiO2 nanoparticles (NPs) in their undoped, doped, and co-doped forms for antimicrobial photodynamic therapy (APDT) against Candida albicans. Blue light with a wavelength of 450 nm was used, with doses ranging from 20 to 60 J/cm2 and an NP concentration of 500 µg/ml. It was observed that doping TiO2 with Cu, Fe, Ag ions, and co-doping Cu:Fe into the TiO2 nanostructure enhanced the visible light photoactivity of TiO2 NPs. Experimental studies were done to investigate the effects of different ions doped into the TiO2 crystal lattice on their structural, optical, morphological, and chemical composition for APDT applications. In particular, Ag-doped TiO2 emerged as the best candidate, achieving 90-100% eradication of C. albicans.

2.
J Biomed Opt ; 28(12): 125002, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38074216

ABSTRACT

Significance: Speckle contrast analysis is the basis of laser speckle imaging (LSI), a simple, inexpensive, noninvasive technique used in various fields of medicine and engineering. A common application of LSI is the measurement of tissue blood flow. Accurate measurement of speckle contrast is essential to correctly measure blood flow. Variables, such as speckle grain size and camera pixel size, affect the speckle pattern and thus the speckle contrast. Aim: We studied the effects of spatial correlation among adjacent camera pixels on the resulting speckle contrast values. Approach: We derived a model that accounts for the potential correlation of intensity values in the common experimental situation where the speckle grain size is larger than the camera pixel size. In vitro phantom experiments were performed to test the model. Results: Our spatial correlation model predicts that speckle contrast first increases, then decreases as the speckle grain size increases relative to the pixel size. This decreasing trend opposes what is observed with a standard speckle contrast model that does not consider spatial correlation. Experimental data are in good agreement with the predictions of our spatial correlation model. Conclusions: We present a spatial correlation model that provides a more accurate measurement of speckle contrast, which should lead to improved accuracy in tissue blood flow measurements. The associated correlation factors only need to be calculated once, and open-source software is provided to assist with the calculation.


Subject(s)
Diagnostic Techniques, Cardiovascular , Hemodynamics , Phantoms, Imaging , Software
3.
Photodiagnosis Photodyn Ther ; 36: 102567, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34614427

ABSTRACT

Organic light emitting diodes (OLEDs) are very attractive light sources because they are large area emitters, and can in principle be deposited on flexible substrates. These features make them suitable for ambulatory photodynamic therapy (PDT). A few reports of in vitro or in vivo OLED based PDT studies for cancer or microbial inhibition are published but to our best knowledge, none against yeasts. Yeast infections are a significant health risk, especially in low income countries with limited medical facilities. In this work, OLED-based antimicrobial PDT (aPDT), using methylene blue (MB) as photosensitizer (PS), is studied to inactivate opportunistic yeast of four Candida strains of two species: Candida albicans and Candida tropicalis. Before aPDT experiments, fluconazole-resistance was evaluated for all strains, showing that both strains of C. tropicalis were resistant and both strains of C. albicans were sensitive to it. We found that 3 repetitive irradiations work better than a single dose while keeping the total fluence constant, and that this result applies whether or not the strains are resistant to fluconazole.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Antifungal Agents/pharmacology , Candida , Candida albicans , Methylene Blue/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology
4.
Biomed Opt Express ; 10(4): 2020-2031, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31061770

ABSTRACT

Visualization of blood vessels is a fundamental task in the evaluation of the health and biological integrity of tissue. Laser speckle contrast imaging (LSCI) is a non-invasive technique to determine the blood flow in superficial or exposed vasculature. However, the high scattering of biological tissue hinders the visualization of those structures. In this paper, we propose the use of principal component analysis (PCA) in combination with LSCI to improve the visualization of deep blood vessels by selecting the most significant principal components. This analysis was applied to in vitro samples, and our results demonstrate that this approach allows for the visualization and localization of blood vessels as deep as 1000 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...