Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Am Soc Nephrol ; 35(3): 261-280, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38189228

ABSTRACT

SIGNIFICANCE STATEMENT: Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI). Furthermore, the study provides evidence for P i -sensitive osseous Fgf23 mRNA expression and reveals that P i restriction mitigated calciprotein particles (CPPs) formation, inflammation, acidosis, cardiac electrical disturbances, and mortality in mice with FA-AKI. These findings suggest that P i restriction may have a prophylactic potential in patients at risk for AKI. BACKGROUND: In AKI, plasma FGF23 and P i rise rapidly and are independently associated with disease severity and outcome. METHODS: The effects of normal (NP) and low (LP) dietary P i were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. RESULTS: After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α -Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. CONCLUSIONS: This study reveals P i -sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that P i restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary P i restriction could have prophylactic potential in patients at risk for AKI.


Subject(s)
Acidosis , Acute Kidney Injury , Animals , Humans , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Calcitriol , Folic Acid , Inflammation , Interleukin-6 , Parathyroid Hormone , Phosphates , RNA, Messenger
3.
Am J Physiol Renal Physiol ; 326(1): F105-F117, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37881875

ABSTRACT

Folic acid (FA)-induced acute kidney injury (FA-AKI) is an increasingly prevalent rodent disease model involving the injection of a high dose of FA that culminates in renal FA crystal deposition and injury. However, the literature characterizing the FA-AKI model is sparse and dated in part due to the absence of a well-described methodology for the visualization and quantification of renal FA crystals. Using widely available materials and tools, we developed a straightforward and crystal-preserving histological protocol that can be coupled with automated imaging for renal FA crystal visualization and generated an automated macro for downstream crystal content quantification. The applicability of the method was demonstrated by characterizing the model in male and female C57BL6/JRj mice after 3 and 30 h of FA treatment. Kidneys from both sexes and timepoints showed a bimodal distribution of FA crystal deposition in the cortical and medullary regions while, compared with males, females exhibited higher renal FA crystal content at the 30-h timepoint accompanied by greater kidney weight and higher plasma urea. Despite comparable plasma phosphate concentrations, FA-AKI resulted in a substantially more elevated plasma intact fibroblast growth factor 23 (FGF23) in females, reflected by a similar pattern in osseous Fgf23 mRNA expression. Therefore, the presented method constitutes a valuable tool for the quantification of renal FA crystals, which can aid the mechanistic characterization of the FA-AKI model and serves as a means to control for confounding changes in FA crystallization when using the model for investigating early and prophylactic AKI therapeutic interventions.NEW & NOTEWORTHY Here, we describe a novel method for the visualization and quantification of renal folic acid (FA) crystals in the rodent FA-induced acute kidney injury (FA-AKI) model. The protocol involves a straightforward histological approach followed by fully automated imaging and quantification steps. Applicability was confirmed by showing that the FA-AKI model is sex-dependent. The method can serve as a tool to aid in characterizing FA-AKI and to control for studies investigating prophylactic therapeutic avenues using FA-AKI.


Subject(s)
Acute Kidney Injury , Folic Acid , Male , Female , Mice , Animals , Acute Kidney Injury/pathology , Kidney/pathology , Blood Urea Nitrogen , Mice, Inbred C57BL
4.
Clin Kidney J ; 16(10): 1622-1633, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37779856

ABSTRACT

Background: Hyperphosphatemia is associated with increased mortality and cardiovascular morbidity of end-stage kidney failure (ESKF) patients. Managing serum phosphate in ESKF patients is challenging and mostly based on limiting intestinal phosphate absorption with low phosphate diets and phosphate binders (PB). In a multi-centric, double-blinded, placebo-controlled study cohort of maintenance hemodialysis patients with hyperphosphatemia, we demonstrated the efficacy of nicotinamide modified release (NAMR) formulation treatment in addition to standard PB therapy in decreasing serum phosphate. Here we aimed to assess the relationship between phosphate, FGF23, inflammation and iron metabolism in this cohort. Methods: We measured the plasma concentrations of intact fibroblast growth factor 23 (iFGF23) and selected proinflammatory cytokines at baseline and Week 12 after initiating treatment. Results: We observed a strong correlation between iFGF23 and cFGF23 (C-terminal fragment plus iFGF23). We identified iFGF23 as a better predictor of changes in serum phosphate induced by NAMR and PB treatment compared with cFGF23. Recursive partitioning revealed at baseline and Week 12, that iFGF23 and cFGF23 together with T50 propensity were the most important predictors of serum phosphate, whereas intact parathyroid hormone (iPTH) played a minor role in this model. Furthermore, we found serum phosphate and iPTH as the best predictors of iFGF23 and cFGF23. Sex, age, body mass index, and markers of inflammation and iron metabolism had only a minor impact in predicting FGF23. Conclusion: Lowering serum phosphate in ESKF patients may depend highly on iFGF23 which is correlated to cFGF23 levels. Serum phosphate was the most important predictor of plasma FGF23 in this ESKF cohort.

5.
Am J Physiol Renal Physiol ; 321(6): F785-F798, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34719948

ABSTRACT

Na+-dependent phosphate cotransporters NaPi-IIa and NaPi-IIc, located at the brush-border membrane of renal proximal tubules, are regulated by numerous factors, including fibroblast growth factor 23 (FGF23). FGF23 downregulates NaPi-IIa and NaPi-IIc abundance after activating a signaling pathway involving phosphorylation of ERK1/2 (phospho-ERK1/2). FGF23 also downregulates expression of renal 1-α-hydroxylase (Cyp27b1) and upregulates 24-hydroxylase (Cyp24a1), thus reducing plasma calcitriol levels. Here, we examined the time course of FGF23-induced internalization of NaPi-IIa and NaPi-IIc and their intracellular pathway toward degradation in vivo. Mice were injected intraperitoneally with recombinant human (rh)FGF23 in the absence (biochemical analysis) or presence (immunohistochemistry) of leupeptin, an inhibitor of lysosomal proteases. Phosphorylation of ERK1/2 was enhanced 60 min after rhFGF23 administration, and increased phosphorylation was still detected 480 min after injection. Colocalization of phospho-ERK1/2 with NaPi-IIa was seen at 60 and 120 min and partly at 480 min. The abundance of both cotransporters was reduced 240 min after rhFGF23 administration, with a further reduction at 480 min. NaPi-IIa and NaPi-IIc were found to colocalize with clathrin and early endosomal antigen 1 as early as 120 min after rhFGF23 injection. Both cotransporters partially colocalized with cathepsin B and lysosomal-associated membrane protein-1, markers of lysosomes, 120 min after rhFGF23 injection. Thus, NaPi-IIa and NaPi-IIc are internalized within 2 h upon rhFGF23 injection. Both cotransporters share the pathway of clathrin-mediated endocytosis that leads first to early endosomes, finally resulting in trafficking toward the lysosome as early as 120 min after rhFGF23 administration.NEW & NOTEWORTHY The hormone fibroblast growth factor 23 (FGF23) controls phosphate homeostasis by regulating renal phosphate excretion. FGF23 acts on several phosphate transporters in the kidney. Here, we define the time course of this action and demonstrate how phosphate transporters NaPi-IIa and NaPi-IIc are internalized.


Subject(s)
Endosomes/drug effects , Fibroblast Growth Factor-23/pharmacology , Kidney/drug effects , Lysosomes/drug effects , Animals , Endosomes/metabolism , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Kidney/metabolism , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Lysosomes/metabolism , Mice , Parathyroid Hormone/metabolism , Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
6.
Sci Rep ; 11(1): 6175, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731726

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine hormone that regulates phosphate and vitamin D metabolism. In models of FGF23 excess, renal deoxyribonuclease 1 (Dnase1) mRNA expression is downregulated. Dnase-1 is an endonuclease which binds monomeric actin. We investigated whether FGF23 suppresses renal Dnase-1 expression to facilitate endocytic retrieval of renal sodium dependent phosphate co-transporters (NaPi-IIa/c) from the brush border membrane by promoting actin polymerization. We showed that wild type mice on low phosphate diet and Fgf23-/- mice with hyperphosphatemia have increased renal Dnase1 mRNA expression while in Hyp mice with FGF23 excess and hypophosphatemia, Dnase1 mRNA expression is decreased. Administration of FGF23 in wild type and Fgf23-/- mice lowered Dnase1 expression. Taken together, our data shows that Dnase1 is regulated by FGF23. In 6-week-old Dnase1-/- mice, plasma phosphate and renal NaPi-IIa protein were significantly lower compared to wild-type mice. However, these changes were transient, normalized by 12 weeks of age and had no impact on bone morphology. Adaptation to low and high phosphate diet were similar in Dnase1-/- and Dnase1+/+ mice, and loss of Dnase1 gene expression did not rescue hyperphosphatemia in Fgf23-/- mice. We conclude that Dnase-1 does not mediate FGF23-induced inhibition of renal tubular phosphate reabsorption.


Subject(s)
Deoxyribonuclease I/metabolism , Fibroblast Growth Factors/metabolism , Hyperphosphatemia/metabolism , Hypophosphatemia/metabolism , Kidney/metabolism , Phosphates/metabolism , Animals , Fibroblast Growth Factor-23 , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Clin Sci (Lond) ; 135(1): 201-227, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33416083

ABSTRACT

Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.


Subject(s)
Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Inflammation/metabolism , Inflammation/pathology , Phosphates/metabolism , Calcium/metabolism , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Humans , Renal Insufficiency, Chronic/metabolism
8.
Pflugers Arch ; 471(9): 1159-1160, 2019 09.
Article in English | MEDLINE | ID: mdl-31300871
9.
Kidney Int ; 96(4): 890-905, 2019 10.
Article in English | MEDLINE | ID: mdl-31301888

ABSTRACT

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis, and its early rise in patients with chronic kidney disease is independently associated with all-cause mortality. Since inflammation is characteristic of chronic kidney disease and associates with increased plasma FGF23 we examined whether inflammation directly stimulates FGF23. In a population-based cohort, plasma tumor necrosis factor (TNF) was the only inflammatory cytokine that independently and positively correlated with plasma FGF23. Mouse models of chronic kidney disease showed signs of renal inflammation, renal FGF23 expression and elevated systemic FGF23 levels. Renal FGF23 expression coincided with expression of the orphan nuclear receptor Nurr1 regulating FGF23 in other organs. Antibody-mediated neutralization of TNF normalized plasma FGF23 and suppressed ectopic renal Fgf23 expression. Conversely, TNF administration to control mice increased plasma FGF23 without altering plasma phosphate. Moreover, in Il10-deficient mice with inflammatory bowel disease and normal kidney function, plasma FGF23 was elevated and normalized upon TNF neutralization. Thus, the inflammatory cytokine TNF contributes to elevated systemic FGF23 levels and also triggers ectopic renal Fgf23 expression in animal models of chronic kidney disease.


Subject(s)
Fibroblast Growth Factors/blood , Inflammatory Bowel Diseases/immunology , Renal Insufficiency, Chronic/immunology , Tumor Necrosis Factor-alpha/metabolism , Adult , Animals , Cell Line , Cohort Studies , Disease Models, Animal , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/immunology , Fibroblast Growth Factors/metabolism , Humans , Inflammatory Bowel Diseases/blood , Interleukin-10/deficiency , Interleukin-10/genetics , Kidney/immunology , Kidney/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Primary Cell Culture , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/pathology , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
11.
Front Physiol ; 9: 1494, 2018.
Article in English | MEDLINE | ID: mdl-30405444

ABSTRACT

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis and vitamin D metabolism. In patients with acute kidney injury (AKI), FGF23 levels rise rapidly after onset of AKI and are associated with AKI progression and increased mortality. In mouse models of AKI, excessive rise in FGF23 levels is accompanied by a moderate increase in FGF23 expression in bone. We examined the folic acid-induced AKI (FA-AKI) mouse model to determine whether other organs contribute to the increase in plasma FGF23 and assessed the vitamin D axis as a possible trigger for increased Fgf23 gene expression. Twenty-four hours after initiation of FA-AKI, plasma intact FGF23 and 1,25(OH)2D were increased and kidney function declined. FA-treated mice developed renal inflammation as shown by increased Tnf and Tgfb mRNA expression. Fgf23 mRNA expression was 5- to 15-fold upregulated in thymus, spleen and heart of FA-treated mice, respectively, but only 2-fold in bone. Ectopic renal Fgf23 mRNA expression was also detected in FA-AKI mice. Plasma FGF23 and Fgf23 mRNA expression in thymus, spleen, heart, and bone strongly correlated with renal Tnf mRNA expression. Furthermore, Vdr mRNA expression was upregulated in spleen, thymus and heart and strongly correlated with Fgf23 mRNA expression in the same organ. In conclusion, the rapid rise in plasma FGF23 in FA-AKI mice is accompanied by increased Fgf23 mRNA expression in multiple organs and increased Vdr expression in extra osseous tissues together with increased plasma 1,25(OH)2D and inflammation may trigger the rise in FGF23 in FA-AKI.

12.
J Clin Invest ; 128(12): 5368-5373, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30226830

ABSTRACT

Hyperphosphatemic familial tumoral calcinosis (HFTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is an autosomal recessive disorder of ectopic calcification due to deficiency of or resistance to intact fibroblast growth factor 23 (iFGF23). Inactivating mutations in FGF23, N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO (KL) have been reported as causing HFTC/HHS. We present what we believe is the first identified case of autoimmune hyperphosphatemic tumoral calcinosis in an 8-year-old boy. In addition to the classical clinical and biochemical features of hyperphosphatemic tumoral calcinosis, the patient exhibited markedly elevated intact and C-terminal FGF23 levels, suggestive of FGF23 resistance. However, no mutations in FGF23, KL, or FGF receptor 1 (FGFR1) were identified. He subsequently developed type 1 diabetes mellitus, which raised the possibility of an autoimmune cause for hyperphosphatemic tumoral calcinosis. Luciferase immunoprecipitation systems revealed markedly elevated FGF23 autoantibodies without detectable FGFR1 or Klotho autoantibodies. Using an in vitro FGF23 functional assay, we found that the FGF23 autoantibodies in the patient's plasma blocked downstream signaling via the MAPK/ERK signaling pathway in a dose-dependent manner. Thus, this report describes the first case, to our knowledge, of autoimmune hyperphosphatemic tumoral calcinosis with pathogenic autoantibodies targeting FGF23. Identification of this pathophysiology extends the etiologic spectrum of hyperphosphatemic tumoral calcinosis and suggests that immunomodulatory therapy may be an effective treatment.


Subject(s)
Autoantibodies , Autoimmune Diseases , Calcinosis , Fibroblast Growth Factors , Hyperostosis, Cortical, Congenital , Hyperphosphatemia , Autoantibodies/blood , Autoantibodies/immunology , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Calcinosis/blood , Calcinosis/immunology , Calcinosis/pathology , Child , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/immunology , Humans , Hyperostosis, Cortical, Congenital/blood , Hyperostosis, Cortical, Congenital/immunology , Hyperostosis, Cortical, Congenital/pathology , Hyperphosphatemia/blood , Hyperphosphatemia/immunology , Hyperphosphatemia/pathology , MAP Kinase Signaling System/immunology , Male
13.
Biochem Biophys Res Commun ; 470(2): 384-390, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26773502

ABSTRACT

The fibroblast growth factor (FGF23) plasma level is high in cardiac and renal failure and is associated with poor clinical prognosis of these disorders. Both diseases are paralleled by hyperaldosteronism. Excessive FGF23 levels and hyperaldosteronism are further observed in Klotho-deficient mice. The present study explored a putative aldosterone sensitivity of Fgf23 transcription and secretion the putative involvement of the aldosterone sensitive serum & glucocorticoid inducible kinase SGK1, SGK1 sensitive transcription factor NFκB and store operated Ca(2+) entry (SOCE). Serum FGF23 levels were determined by ELISA in mice following sham treatment or exposure to deoxycorticosterone acetate (DOCA) or salt depletion. In osteoblastic UMR106 cells transcript levels were quantified by qRT-PCR, cytosolic Ca(2+) concentration utilizing Fura-2-fluorescence, and SOCE from Ca(2+) entry following store depletion by thapsigargin. As a result, DOCA treatment and salt depletion of mice elevated the serum C-terminal FGF23 concentration. In UMR106 cells aldosterone enhanced and spironolactone decreased SOCE. Aldosterone further increased Fgf23 transcript levels in UMR106 cells, an effect reversed by mineralocorticoid receptor blockers spironolactone and eplerenone, SGK1 inhibitor EMD638683, NFκB-inhibitor withaferin A, and Ca(2+) channel blocker YM58483. In conclusion, Fgf23 expression is up-regulated by aldosterone, an effect sensitive to SGK1, NFκB and store-operated Ca(2+) entry.


Subject(s)
Aldosterone/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Fibroblast Growth Factors/biosynthesis , NF-kappa B/metabolism , Osteoblasts/metabolism , Animals , Cells, Cultured , Female , Fibroblast Growth Factor-23 , Male , Mice , Mice, Inbred C57BL , Up-Regulation/physiology
14.
J Mol Med (Berl) ; 94(5): 557-66, 2016 05.
Article in English | MEDLINE | ID: mdl-26631141

ABSTRACT

UNLABELLED: Fibroblast growth factor (FGF23) plasma levels are elevated in cardiac and renal failure and correlate with poor clinical prognosis of those disorders. Both disorders are associated with inflammation and activation of the inflammatory transcription factor NFκB. An excessive FGF23 level is further observed in Klotho-deficient mice. The present study explored a putative sensitivity of FGF23 expression to transcription factor NFκB, which is known to upregulate Orai1, the Ca(2+) channel accomplishing store-operated Ca(2+) entry (SOCE). In osteoblastic cells (UMR106) and immortalized primary periosteal (IPO) cells, protein abundance was determined by Western blotting, and in UMR106 cells, transcript levels were quantified by RT-PCR, cytosolic Ca(2+) activity utilizing Fura-2-fluorescence, and SOCE from Ca(2+) entry following store depletion by thapsigargin. As a result, UMR106 and IPO cells expressed Ca(2+) channel Orai1. SOCE was lowered by NFκB inhibitor wogonin as well as by Orai1 inhibitors 2-APB and YM58483. UMR106 cell Fgf23 transcripts were increased by stimulation of SOCE and Ca(2+) ionophore ionomycin and decreased by Orai inhibitors 2-APB, YM58483 and SK&F96365, by Orai1 silencing, as well as by NFκB inhibitors wogonin, withaferin A, and CAS 545380-34-5. In conclusion, Fgf23 expression is upregulated by stimulation of NFκB-sensitive, store-operated Ca(2+) entry. KEY MESSAGES: Osteoblast UMR106 and IPO cells express Ca(2+) channel Orai1. Osteoblast store-operated Ca(2+) entry is accomplished by NFκB-sensitive Orai1. Osteoblast Fgf23 transcription is upregulated by increase in the cytosolic Ca(2+) activity. Fgf23 transcription is decreased by Orai inhibitors and Orai1 silencing. Fgf23 transcription is lowered by NFκB inhibitors.


Subject(s)
Fibroblast Growth Factors/metabolism , Gene Expression Regulation , NF-kappa B/metabolism , ORAI1 Protein/genetics , Animals , Bone and Bones/metabolism , Calcium/metabolism , Cell Line, Tumor , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Intracellular Space/metabolism , Osteoblasts/metabolism , Rats
15.
Kidney Int ; 85(6): 1340-50, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24402093

ABSTRACT

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis and is linked to cardiovascular disease and all-cause mortality in chronic kidney disease. FGF23 rises in patients with CKD stages 2-3, but in patients with autosomal dominant polycystic kidney disease, the increase of FGF23 precedes the first measurable decline in renal function. The mechanisms governing FGF23 production and effects in kidney disease are largely unknown. Here we studied the relation between FGF23 and mineral homeostasis in two animal models of PKD. Plasma FGF23 levels were increased 10-fold in 4-week-old cy/+ Han:SPRD rats, whereas plasma urea and creatinine concentrations were similar to controls. Plasma calcium and phosphate levels as well as TmP/GFR were similar in PKD and control rats at all time points examined. Expression and activity of renal phosphate transporters, the vitamin D3-metabolizing enzymes, and the FGF23 co-ligand Klotho in the kidney were similar in PKD and control rats through 8 weeks of age, indicating resistance to FGF23, although phosphorylation of the FGF receptor substrate 2α protein was enhanced. In the kidneys of rats with PKD, FGF23 mRNA was highly expressed and FGF23 protein was detected in cells lining renal cysts. FGF23 expression in bone and spleen was similar in control rats and rats with PKD. Similarly, in an inducible Pkd1 knockout mouse model, plasma FGF23 levels were elevated, FGF23 was expressed in kidneys, but renal phosphate excretion was normal. Thus, the polycystic kidney produces FGF23 but is resistant to its action.


Subject(s)
Fibroblast Growth Factors/metabolism , Kidney/metabolism , Polycystic Kidney Diseases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biomarkers/blood , Calcitriol/metabolism , Calcium/blood , Creatinine/blood , Disease Models, Animal , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Glucuronidase/metabolism , Kidney/pathology , Klotho Proteins , Male , Mice, Knockout , Parathyroid Hormone/blood , Phosphates/blood , Phosphorylation , Polycystic Kidney Diseases/blood , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , RNA, Messenger/metabolism , Rats , Signal Transduction , TRPP Cation Channels/deficiency , TRPP Cation Channels/genetics , Up-Regulation , Urea/blood
16.
Kidney Int ; 84(5): 962-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23715121

ABSTRACT

Renal tubular epithelial cell proliferation and transepithelial cyst fluid secretion are key features in the progression of polycystic kidney disease (PKD). As the role of the apical renal sodium-glucose cotransporters in these processes is not known, we tested whether phlorizin inhibits cyst growth and delays renal disease progression in a rat model of PKD. Glycosuria was induced by subcutaneous injection of phlorizin in male heterozygous (Cy/+) and wild-type Han:SPRD rats. Phlorizin induced immediate and sustained glycosuria and osmotic diuresis in these rats. Cy/+ rats treated with phlorizin for 5 weeks showed a significant increase in creatinine clearance, a lower 2-kidneys/body weight ratio, a lower renal cyst index, and reduced urinary albumin excretion as compared with vehicle-treated Cy/+ rats. Measurement of Ki67 staining found significantly lower cell proliferation in dilated tubules and cysts of Cy/+ rats treated with phlorizin, as well as a marked inhibition of the activated MAP kinase pathway. In contrast, the mTOR pathway remained unaltered. Phlorizin dose dependently inhibited MAP kinase in cultured tubular epithelial cells from Cy/+ rats. Thus, long-term treatment with phlorizin significantly inhibits cystic disease progression in a rat model of PKD. Hence, induction of glycosuria and osmotic diuresis (glycuresis) by renal sodium-glucose cotransporters inhibition could have a therapeutic effect in polycystic kidney disease.


Subject(s)
Kidney/drug effects , Phlorhizin/pharmacology , Polycystic Kidney Diseases/drug therapy , Sodium-Glucose Transport Proteins/antagonists & inhibitors , Urological Agents/pharmacology , Albuminuria/metabolism , Albuminuria/prevention & control , Animals , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Disease Progression , Diuresis/drug effects , Dose-Response Relationship, Drug , Glycosuria/metabolism , Heterozygote , Ki-67 Antigen/metabolism , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , MAP Kinase Signaling System/drug effects , Male , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Molecular Targeted Therapy , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/pathology , Polycystic Kidney Diseases/physiopathology , Rats , Sodium-Glucose Transport Proteins/metabolism , Time Factors
17.
Nephrol Dial Transplant ; 28(2): 352-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23129826

ABSTRACT

BACKGROUND: Klotho and fibroblast growth factor 23 (FGF23) are key regulators of mineral metabolism in renal insufficiency. FGF23 levels have been shown to increase early in chronic kidney disease (CKD); however, the corresponding soluble Klotho levels at the different CKD stages are not known. METHODS: Soluble Klotho, FGF23, parathyroid hormone (PTH), 1,25-dihydroxy vitamin D(3) (1,25D) and other parameters of mineral metabolism were measured in an observational cross-sectional study in 87 patients. Locally weighted scatter plot smoothing function of these parameters were plotted versus estimated glomerular filtration rate (eGFR) to illustrate the pattern of the relationship. Linear and non-linear regression analyses were performed to estimate changes in mineral metabolism parameters per 1mL/min/1.73 m(2) decline. RESULTS: In CKD 1-5, Klotho and 1,25D linearly decreased, whereas both FGF23 and PTH showed a baseline at early CKD stages and then a curvilinear increase. Crude mean Klotho level declined by 4.8 pg/mL (95% CI 3.5-6.2 pg/mL, P < 0.0001) and 1,25D levels by 0.30 ng/L (95% CI 0.18-0.41 ng/L, P < 0.0001) as GFR declined by 1 mL/min/1.73 m(2). After adjustment for age, gender, serum 25-hydroxyvitamin D levels and concomitant medications (calcium, supplemental vitamin D and calcitriol), we estimated that the mean Klotho change was 3.2 pg/mL (95% CI 1.2-5.2 pg/mL, P = 0.0019) for each 1 mL/min/1.73 m(2) GFR change. FGF23 departed from the baseline at an eGFR of 47 mL/min/1.73 m(2) (95% CI 39-56 mL/min/1.73 m(2)), whereas PTH departed at an eGFR of 34 mL/min/1.73 m(2) (95% CI 19-50 mL/min/1.73 m(2)). CONCLUSIONS: Soluble Klotho and 1,25D levels decrease and FGF23 levels increase at early CKD stages, whereas PTH levels increase at more advanced CKD stages.


Subject(s)
Disease Progression , Fibroblast Growth Factors/blood , Glucuronidase/blood , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/physiopathology , Severity of Illness Index , Adult , Aged , Biomarkers/blood , Calcium/blood , Case-Control Studies , Cross-Sectional Studies , Female , Fibroblast Growth Factor-23 , Glomerular Filtration Rate/physiology , Humans , Klotho Proteins , Male , Middle Aged , Minerals/metabolism , Parathyroid Hormone/blood , Phosphates/blood , Vitamin D/analogs & derivatives , Vitamin D/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...