Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aerosol Sci Technol ; 58(3): 264-275, 2024.
Article in English | MEDLINE | ID: mdl-38706712

ABSTRACT

The ability to collect size-fractionated airborne particles that contain viable bacteria and fungi directly into liquid medium while also maintaining their viability is critical for assessing exposure risks. In this study, we present the BioCascade impactor, a novel device designed to collect airborne particles into liquid based on their aerodynamic diameter in three sequential stages (>9.74 µm, 3.94-9.74 µm, and 1.38-3.94 µm when operated at 8.5 L/min). Aerosol samples containing microorganisms - either Saccharomyces kudriavzevii or Micrococcus luteus, were used to evaluate the performance of the BioCascade (BC) paired with either the VIable Virus Aerosol Sampler (VIVAS) or a gelatin filter (GF) as stage 4 to collect particles <1.38 µm. Stages 2 and 3 collected the largest fractions of viable S. kudriavzevii when paired with VIVAS (0.468) and GF (0.519), respectively. Stage 3 collected the largest fraction of viable M. luteus particles in both BC+VIVAS (0.791) and BC+GF (0.950) configurations. The distribution function of viable microorganisms was consistent with the size distributions measured by the Aerodynamic Particle Sizer. Testing with both bioaerosol species confirmed no internal loss and no re-aerosolization occurred within the BC. Irrespective of the bioaerosol tested, stages 1, 3 and 4 maintained ≥80% of viability, while stage 2 maintained only 37% and 73% of viable S. kudriavzevii and M. luteus, respectively. The low viability that occurred in stage 2 warrants further investigation. Our work shows that the BC can efficiently size-classify and collect bioaerosols without re-aerosolization and effectively maintain the viability of collected microorganisms.

2.
Aerosol Sci Technol ; 48(4): 401-408, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24839342

ABSTRACT

Presented is a new approach for laminar-flow water condensation that produces saturations above 1.5 while maintaining temperatures of less than 30°C in the majority of the flow and providing an exiting dew point below 15°C. With the original laminar flow water condensation method, the particle activation and growth occurs in a region with warm, wetted walls throughout, which has the side-effect of heating the flow. The "moderated" approach presented here replaces this warm region with a two sections - a short, warm, wet-walled "initiator", followed by a cool-walled "moderator". The initiator provides the water vapor that creates the supersaturation, while the moderator provides the time for particle growth. The combined length of the initiator and moderator sections is the same as that of the original, warm-walled growth section. Model results show that this new approach reduces the added heat and water vapor while achieving the same peak supersaturation and similar droplet growth. Experimental measurements confirm the trends predicted by the modeling.

3.
Atmos Environ (1994) ; 96: 125-134, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25574151

ABSTRACT

A versatile and compact sampling system, the Sequential Spot Sampler (S3) has been developed for pre-concentrated, time-resolved, dry collection of fine and ultrafine particles. Using a temperature-moderated laminar flow water condensation method, ambient particles as small as 6 nm are deposited within a dry, 1-mm diameter spot. Sequential samples are collected on a multiwell plate. Chemical analyses are laboratory-based, but automated. The sample preparation, extraction and chemical analysis steps are all handled through a commercially-available, needle-based autosampler coupled to a liquid chromatography system. This automation is enabled by the small deposition area of the collection. The entire sample is extracted into 50-100µl volume of solvent, providing quantifiable samples with small collected air volumes. A pair of S3 units was deployed in Stockton (CA) from November 2011 to February 2012. PM2.5 samples were collected every 12 hrs, and analyzed for polycyclic aromatic hydrocarbons (PAHs). In parallel, conventional filter samples were collected for 48 hrs and used to assess the new system's performance. An automated sample preparation and extraction was developed for samples collected using the S3. Collocated data from the two sequential spot samplers were highly correlated for all measured compounds, with a regression slope of 1.1 and r2=0.9 for all measured concentrations. S3/filter ratios for the mean concentration of each individual PAH vary between 0.82 and 1.33, with the larger variability observed for the semivolatile components. Ratio for total PAH concentrations was 1.08. Total PAH concentrations showed similar temporal trend as ambient PM2.5 concentrations. Source apportionment analysis estimated a significant contribution of biomass burning to ambient PAH concentrations during winter.

SELECTION OF CITATIONS
SEARCH DETAIL
...