Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14785, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926535

ABSTRACT

Direct laser acceleration (DLA) of electrons in plasmas of near-critical density (NCD) is a very advancing platform for high-energy PW-class lasers of moderate relativistic intensity supporting Inertial Confinement Fusion research. Experiments conducted at the PHELIX sub-PW Nd:glass laser demonstrated application-promising characteristics of DLA-based radiation and particle sources, such as ultra-high number, high directionality and high conversion efficiency. In this context, the bright synchrotron-like (betatron) radiation of DLA electrons, which arises from the interaction of a sub-ps PHELIX laser pulse with an intensity of 1019 W/cm2 with pre-ionized low-density polymer foam, was studied. The experimental results show that the betatron radiation produced by DLA electrons in NCD plasma is well directed with a half-angle of 100-200 mrad, yielding (3.4 ± 0.4)·1010 photons/keV/sr at 10 keV photon energy. The experimental photon fluence and the brilliance agree well with the particle-in-cell simulations. These results pave the way for innovative applications of the DLA regime using low-density pre-ionized foams in high energy density research.

2.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38416040

ABSTRACT

Solid-state high harmonic generation (sHHG) spectroscopy is a promising technique for studying electronic structure, symmetry, and dynamics in condensed matter systems. Here, we report on the implementation of an advanced sHHG spectrometer based on a vacuum chamber and closed-cycle helium cryostat. Using an in situ temperature probe, it is demonstrated that the sample interaction region retains cryogenic temperature during the application of high-intensity femtosecond laser pulses that generate high harmonics. The presented implementation opens the door for temperature-dependent sHHG measurements down to a few Kelvin, which makes sHHG spectroscopy a new tool for studying phases of matter that emerge at low temperatures, which is particularly interesting for highly correlated materials.

3.
Phys Rev Lett ; 129(14): 147401, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36240395

ABSTRACT

High-harmonic generation (HHG) in solids has been touted as a way to probe ultrafast dynamics and crystal symmetries in condensed matter systems. Here, we investigate the polarization properties of high-order harmonics generated in monolayer MoS_{2}, as a function of crystal orientation relative to the mid-infrared laser field polarization. At several different laser wavelengths we experimentally observe a prominent angular shift of the parallel-polarized odd harmonics for energies above approximately 3.5 eV, and our calculations indicate that this shift originates in subtle differences in the recombination dipole strengths involving multiple conduction bands. This observation is material specific and is in addition to the angular dependence imposed by the dynamical symmetry properties of the crystal interacting with the laser field, and may pave the way for probing the vectorial character of multiband recombination dipoles.

4.
Sci Adv ; 7(21)2021 May.
Article in English | MEDLINE | ID: mdl-34138744

ABSTRACT

The lack of available table-top extreme ultraviolet (XUV) sources with high enough fluxes and coherence properties has limited the availability of nonlinear XUV and x-ray spectroscopies to free-electron lasers (FELs). Here, we demonstrate second harmonic generation (SHG) on a table-top XUV source by observing SHG near the Ti M2,3 edge with a high-harmonic seeded soft x-ray laser. Furthermore, this experiment represents the first SHG experiment in the XUV. First-principles electronic structure calculations suggest the surface specificity and separate the observed signal into its resonant and nonresonant contributions. The realization of XUV-SHG on a table-top source opens up more accessible opportunities for the study of element-specific dynamics in multicomponent systems where surface, interfacial, and bulk-phase asymmetries play a driving role.

5.
Nanomaterials (Basel) ; 11(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375116

ABSTRACT

The generation of high order harmonics from femtosecond mid-IR laser pulses in ZnO has shown great potential to reveal new insight into the ultrafast electron dynamics on a few femtosecond timescale. In this work we report on the experimental investigation of photoluminescence and high-order harmonic generation (HHG) in a ZnO single crystal and polycrystalline thin film irradiated with intense femtosecond mid-IR laser pulses. The ellipticity dependence of the HHG process is experimentally studied up to the 17th harmonic order for various driving laser wavelengths in the spectral range 3-4 µm. Interband Zener tunneling is found to exhibit a significant excitation efficiency drop for circularly polarized strong-field pump pulses. For higher harmonics with energies larger than the bandgap, the measured ellipticity dependence can be quantitatively described by numerical simulations based on the density matrix equations. The ellipticity dependence of the below and above ZnO band gap harmonics as a function of the laser wavelength provides an efficient method for distinguishing the dominant HHG mechanism for different harmonic orders.

6.
Opt Lett ; 45(18): 5295-5298, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932515

ABSTRACT

In this work, we demonstrate a discrete dispersion scan scheme using a low number of flat windows to vary the dispersion of laser pulses in discrete steps. Monte Carlo simulations indicate that the pulse duration can be retrieved accurately with less than 10 dispersion steps, which we verify experimentally by measuring few-cycle pulses and material dispersion curves at 3 and 10 µm wavelength. This minimal measuring scheme using only five optical components without the need for linear positioners and interferometric alignment can be readily implemented in many wavelength ranges and situations.

7.
Opt Express ; 28(5): 7314-7322, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225962

ABSTRACT

High-harmonic generation (HHG) in crystals offers a simple, affordable and easily accessible route to carrier-envelope phase (CEP) measurements, which scales favorably towards longer wavelengths. We present measurements of HHG in ZnO using few-cycle pulses at 3.1µm. Thanks to the broad bandwidth of the driving laser pulses, spectral overlap between adjacent harmonic orders is achieved. The resulting spectral interference pattern provides access to the relative harmonic phase, and hence, the CEP.

8.
Opt Express ; 27(23): 33652-33661, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31878428

ABSTRACT

In this study, the influence of speckle size on contrast-to-noise ratio (CNR) and resolution is examined based on the object dimensions in the macroscopic and microscopic regimes. This research shows that for microscopic samples the conventional scaling laws are no longer effective and the CNR does not counter-propagate in the same manner as the resolution. To our knowledge, a deviation in CNR scaling on speckle size is observed for the first time in the field of microscopic ghost imaging. This result was verified using two different sample shapes. In addition, numerical analysis revealed that the noise of the photodiode is a limiting factor for the CNR. Based on these findings, the conditions for identifying the parameter set that maximizes the CNR and provides high resolution images was defined, which achieving high-quality microscopic ghost images.

9.
Nano Lett ; 19(6): 3563-3568, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31117748

ABSTRACT

Einstein established the quantum theory of radiation and paved the way for modern laser physics including single-photon absorption by charge carriers and finally pumping an active gain medium into population inversion. This can be easily understood in the particle picture of light. Using intense, ultrashort pulse lasers, multiphoton pumping of an active medium has been realized. In this nonlinear interaction regime, excitation and population inversion depend not only on the photon energy but also on the intensity of the incident pumping light, which can be still described solely by the particle picture of light. We demonstrate here that lowering significantly the pump photon energy further still enables population inversion and lasing in semiconductor nanowires. The extremely high electric field of the pump bends the bands and enables tunneling of electrons from the valence to the conduction band. In this regime, the light acts by the classical Coulomb force and population inversion is entirely due to the wave nature of electrons, thus the excitation becomes independent of the frequency but solely depends on the incident intensity of the pumping light.

10.
Chemistry ; 25(36): 8453-8458, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-30980425

ABSTRACT

Phototherapeutic applications of carbon monoxide (CO)-releasing molecules are limited because they require harmful UV and blue light for activation. We describe two-photon excitation with NIR light (800 nm)-induced CO-release from two MnI tricarbonyl complexes bearing 1,8-naphthalimide units (1, 2). Complex 2 behaves as a logic OR gate in solution, nonwovens, and in HeLa cells. CO release, indicated by fluorescence enhancement, was detected in solution, nonwoven, and HeLa cells by single- (405 nm) and two-photon (800 nm) excitation. The photophysical properties of 1 and 2 have been measured and supported by DFT and TDDFT quantum chemical calculations. Both photoCORMs are stable in the dark in solution and noncytotoxic, leading to promising applications as phototherapeutics with NIR light.

11.
Sci Rep ; 9(1): 1735, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30742029

ABSTRACT

Ptychography enables coherent diffractive imaging (CDI) of extended samples by raster scanning across the illuminating XUV/X-ray beam, thereby generalizing the unique advantages of CDI techniques. Table-top realizations of this method are urgently needed for many applications in sciences and industry. Previously, it was only possible to image features much larger than the illuminating wavelength with table-top ptychography although knife-edge tests suggested sub-wavelength resolution. However, most real-world imaging applications require resolving of the smallest and closely-spaced features of a sample in an extended field of view. In this work, resolving features as small as 2.5 λ (45 nm) using a table-top ptychography setup is demonstrated by employing a high-order harmonic XUV source with record-high photon flux. For the first time, a Rayleigh-type criterion is used as a direct and unambiguous resolution metric for high-resolution table-top setup. This reliably qualifies this imaging system for real-world applications e.g. in biological sciences, material sciences, imaging integrated circuits and semiconductor mask inspection.

12.
Appl Opt ; 57(29): 8529-8535, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30461919

ABSTRACT

Understanding polarization in waveguides is of fundamental importance for any photonic device and is particularly relevant within the scope of fiber optics. Here, we investigate the dependence of the geometry-induced polarization behavior of single-ring antiresonant hollow-core fibers on various parameters from the experimental perspective, showing that structural deviations from an ideal polygonal shape impose birefringence and polarization-dependent loss, confirmed by a toy model. The minimal output ellipticity was found at the wavelength of lowest loss near the center of the transmission band, whereas birefringence substantially increases toward the resonances. The analysis that qualitatively also applies to other kinds of hollow-core fibers showed that maximizing the amount of linearly polarized light at the fiber output demands both operating at the wavelength of lowest loss, as well as carefully choosing the relative orientation of input polarization. This should correspond to the situation in which the difference of the core extent along the two corresponding orthogonal polarization directions is minimal. Due to their practical relevance, we expect our findings to be very important in fields such as nonlinear photonics or metrology.

13.
Light Sci Appl ; 6(12): e17124, 2017 Dec.
Article in English | MEDLINE | ID: mdl-30167225

ABSTRACT

Ultrafast supercontinuum generation in gas-filled waveguides is an enabling technology for many intriguing applications ranging from attosecond metrology towards biophotonics, with the amount of spectral broadening crucially depending on the pulse dispersion of the propagating mode. In this study, we show that structural resonances in a gas-filled antiresonant hollow core optical fiber provide an additional degree of freedom in dispersion engineering, which enables the generation of more than three octaves of broadband light that ranges from deep UV wavelengths to near infrared. Our observation relies on the introduction of a geometric-induced resonance in the spectral vicinity of the ultrafast pump laser, outperforming gas dispersion and yielding a unique dispersion profile independent of core size, which is highly relevant for scaling input powers. Using a krypton-filled fiber, we observe spectral broadening from 200 nm to 1.7 µm at an output energy of ∼ 23 µJ within a single optical mode across the entire spectral bandwidth. Simulations show that the frequency generation results from an accelerated fission process of soliton-like waveforms in a non-adiabatic dispersion regime associated with the emission of multiple phase-matched Cherenkov radiations on both sides of the resonance. This effect, along with the dispersion tuning and scaling capabilities of the fiber geometry, enables coherent ultra-broadband and high-energy sources, which range from the UV to the mid-infrared spectral range.

14.
Opt Express ; 24(8): 8028-44, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27137242

ABSTRACT

Optical amplifiers in all ranges of the electromagnetic spectrum exhibit an essential characteristic, namely the input signal during the propagation in the amplifier medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth. We perform a theoretical study motivated and supported by experimental data on a He gas amplifier driven by intense 30-fs-long laser pulses and seeded with attosecond pulse trains generated in a separated Ne gas jet. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of the avalanche effect in the amplification of extreme ultraviolet attosecond pulse trains. We theoretically separate and identify different physical processes taking part in the interaction and we demonstrate that X-ray parametric amplification dominates over others. In particular, we identify strong-field mediated intrapulse X-ray parametric processes as decisive for amplification at the single-atom level. We confirm that the amplification takes place at photon energies where the amplifier is seeded and when the seed pulses are perfectly synchronized with the driving strong field in the amplifier. Furthermore, propagation effects, phase matching and seed synchronization can be exploited to tune the amplified spectral range within the seed bandwidth.

15.
Appl Opt ; 54(19): 5992-7, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26193143

ABSTRACT

Digital in-line holography (DIH) offers fast, lensless, and aberration-free imaging with diffraction-limited resolution and inherently combines phase- and amplitude-contrast imaging, as well as three-dimensional imaging. Extending this technique to shorter wavelengths allows increasing the achievable spatial and phase-contrast resolution, as well as accessing material parameters not accessible in the optical domain. In this paper, we report on DIH experiments conducted with a coherent tabletop ultrafast high harmonic source operated at 38 nm wavelength. Applying a twin-image-free reconstruction scheme optimized for highly absorbing samples, we were able to demonstrate the phase-contrast imaging of silicon nitride sheets of 15 nm thickness and the use of the strong absorption of extreme ultraviolet in matter for amplitude-contrast imaging of thin films with spatial resolution below 1 µm. High-resolution morphology determination in combination with phase-contrast imaging is of special importance in thin-film characterization and applications arising thereof.

16.
Opt Express ; 23(6): 7400-6, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25837081

ABSTRACT

The efficient generation of redshifted pulses from chirped femtosecond joule level Bessel beam pulses in gases is studied. The redshift spans from a few 100 cm⁻¹ to several 1000 cm⁻¹ corresponding to a shift of 50-500 nm for Nd:glass laser systems. The generated pulses have an almost perfect Gaussian beam profile insensitive of the pump beam profile, and are much shorter than the pump pulses. The highest measured energy is as high as 30 mJ, which is significantly higher than possible with solid state nonlinear frequency shifters.

17.
Science ; 346(6215): 1293-4, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25504703
18.
Opt Express ; 22(10): 12038-45, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921323

ABSTRACT

Spectral broadening in gas-filled hollow-core fibers is discussed for sulfur hexafluoride, a molecular gas with Raman activity. Experimental results for compressed pulses are presented for input pulses longer than the Raman period and shorter than the dephasing time at a central wavelength of 800 nm and 400 nm, respectively. For both wavelengths we compress the pulses by a factor of three and maintain a good pulse quality. The obtained results are of interest for compressing pulses generated with Yb doped lasers.

19.
J Med Imaging (Bellingham) ; 1(3): 031008, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26158049

ABSTRACT

In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses.

20.
Opt Express ; 21(18): 21131-47, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24103988

ABSTRACT

We present an experimental realization of coherent diffraction imaging in reflection geometry illuminating the sample with a laser driven high harmonic generation (HHG) based XUV source. After recording the diffraction pattern in reflection geometry, the data must be corrected before the image can be reconstructed with a hybrid-input-output (HIO) algorithm. In this paper we present a detailed investigation of sources of spoiling the reconstructed image due to the nonlinear momentum transfer, errors in estimating the angle of incidence on the sample, and distortions by placing the image off center in the computation grid. Finally we provide guidelines for the necessary parameters to realize a satisfactory reconstruction within a spatial resolution in the range of one micron for an imaging scheme with a numerical aperture NA < 0.03.

SELECTION OF CITATIONS
SEARCH DETAIL
...