Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Neuropharmacology ; 40(6): 749-60, 2001 May.
Article in English | MEDLINE | ID: mdl-11369029

ABSTRACT

NMDA-receptor-mediated mechanisms may be crucial in addictive states, e.g. alcoholism, and provide a target for the novel anti-craving compound acamprosate. Here, the pharmacological effects of acamprosate on NMDA-receptors were studied using electrophysiological techniques in different cell lines in vitro. Additionally, a possible modulation of brain NMDA-receptor subunit expression was examined in vivo in rats, and compared to two effective non-competitive NMDA-receptor antagonists, memantine and MK-801. Electrophysiology in cultured hippocampal neurons (IC(50) approx. 5.5mM) and Xenopus oocytes (NR1-1a/NR2A assemblies: IC(50) approx. 350 microM, NR1-1a/NR2B: IC(50) approx. 250 microM) consistently revealed only a weak antagonism of acamprosate on native or recombinant NMDA-receptors. In HEK-293 cells, acamprosate showed almost no effect on NR1-1a/NR2A or NR1-1a/NR2B recombinants (IC(50)s not calculated). Protein blotting demonstrated an up-regulation of NMDA-receptor subunits after acamprosate as well as after memantine or MK-801, in comparison to controls. After acamprosate, protein levels were increased in the cortex (NR1-3/1-4: 190+/-11% of controls) and hippocampus (NR1-1/1-2: 163+/-11%). The up-regulations observed after memantine (cortex, NR2B: 172+/-17%; hippocampus, NR1-1/1-2: 156+/-8%) or MK-801 (cortex, NR2B: 174+/-22%; hippocampus, NR1-1/1-2: 140+/-3%) were almost identical. No changes were detected in the brainstem. The present data indicate an extremely weak antagonism of NMDA-receptors by acamprosate. However, its ability to modulate the expression of NMDA-receptor subunits in specific brain regions - shared with the well established NMDA-antagonists memantine and MK-801 - may be of relevance for its therapeutic profile, especially considering the growing importance of NMDA-receptor plasticity in the research of ethanol addiction.


Subject(s)
Alcohol Deterrents/pharmacology , Brain/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Neurons/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects , Taurine/pharmacology , Acamprosate , Animals , Brain/metabolism , Cell Line , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/pharmacology , Female , Humans , Male , Memantine/pharmacology , N-Methylaspartate/pharmacology , Neurons/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Taurine/analogs & derivatives , Xenopus
2.
Neuropharmacology ; 38(1): 85-108, 1999 Jan.
Article in English | MEDLINE | ID: mdl-10193901

ABSTRACT

The present study characterized the in vitro NMDA receptor antagonistic properties of novel amino-alkyl-cyclohexane derivatives and compared these effects with their ability to block excitotoxicity in vitro and MES-induced convulsions in vivo. The 36 amino-alkyl-cyclohexanes tested displaced [3H]-(+)-MK-801 binding to rat cortical membranes with K(i)s between 1.5 and 143 microM. Current responses of cultured hippocampal neurones to NMDA were antagonized by the same compounds with a wide range of potencies (IC50s of 1.3-245 microM, at -70 mV) in a use- and strongly voltage-dependent manner (delta 0.55-0.87). The offset kinetics of NMDA receptor blockade was correlated with equilibrium affinity (Corr Coeff. 0.87 P < 0.0001). As an example, MRZ 2/579 (1-amino-1,3,3,5,5-pentamethyl-cyclohexane HCl) had similar blocking kinetics to those previously reported for memantine (K(on) 10.67 +/- 0.09 x 10(4) M(-1) s(-1), K(off) 0.199 +/- 0.02 s(-1), K(d) = K(off)/K(on) = 1.87 microM c.f. IC50 of 1.29 microM). Most amino-alkyl-cyclohexanes were protective against glutamate toxicity in cultured cortical neurones (e.g. MRZ 2/579 IC50 2.16 +/- 0.03 microM). Potencies in the three in vitro assays showed a relatively strong cross correlation (all corr. coeffs. > 0.72, P < 0.0001). MRZ 2/579 was also effective in protecting hippocampal slices against 7 min. hypoxia/hypoglycaemia-induced reduction of fEPSP amplitude in CA1 with an EC50 of 7.01 +/- 0.24 microM. MRZ 2/579 showed no selectivity between NMDA receptor subtypes expressed in Xenopus oocytes but was somewhat more potent than in patch clamp experiments-IC50s of 0.49 +/- 0.11, 0.56 +/- 0.01 microM, 0.42 +/- 0.04 and 0.49 +/- 0.06 microM on NR1a/2A /2B, /2C and 2/D, respectively. In contrast, memantine and amantadine were both 3-fold more potent at NR1a/2C and NR1a/2D than NR1a/2A receptors. All Merz amino-alkyl-cyclohexane derivatives inhibited MES-induced convulsions in mice with ED50s ranging from 3.6 to 130 mg/kg i.p. The in vivo and in vitro potencies correlated indicating similar access of most compounds to the CNS. MRZ 2/579 administered at 10 mg/kg resulted in peak plasma concentrations of 5.3 and 1.4 microM following i.v. and p.o. administration respectively, which then declined with a half life of around 170-210 min. Analysis of A.U.C. concentrations indicates a p.o./i.v. bioavailability ratio for MRZ 2/579 of 60%. MRZ 2/579 injected i.p. at a dose of 5 mg/kg resulted in peak brain extracellular fluid (ECF) concentrations of 0.78 microM (brain microdialysates). Of the compounds tested MRZ 2/579, 2/615, 2/632, 2/633, 2/639 and 2/640 had affinities, kinetics and voltage-dependency most similar to those of memantine and had good therapeutic indices against MES-induced convulsions. We predict that these amino-alkyl-cyclohexanes, which all had methyl substitutions at R1, R2, and R5, at least one methyl or ethyl at R3 or R4 and a charged amino-containing substitution at R6, could be useful therapeutics in a wide range of CNS disorders proposed to involve disturbances of glutamatergic transmission.


Subject(s)
Amines/pharmacology , Cyclohexanes/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Alkylation , Animals , Binding, Competitive , Cells, Cultured , In Vitro Techniques , Kinetics , Male , Mice , Neurons/drug effects , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Rats, Wistar , Time Factors , Xenopus laevis
3.
Neuropharmacology ; 37(10-11): 1299-320, 1998.
Article in English | MEDLINE | ID: mdl-9849667

ABSTRACT

In outside-out patches from cultured hippocampal neurones, glutamate (1 mM) applied for 1 ms evoked currents which rose rapidly (tau(on) 451 +/- 31 micros) to a peak and then deactivated with slower kinetics (1.95 +/- 0.13 ms). Offset time constants were significantly slower with longer application durations (tau(off) 3.10 +/- 0.19, 3.82 +/- 0.25, 4.80 +/- 0.65 and 7.56 +/- 0.65 ms with 10, 20, 100 and 500 ms applications respectively). Desensitization was complete within 100 ms with a similar rate for all application durations (4.74 +/- 0.34 ms with 100 ms applications). GYKI 52466 reduced inward peak currents with an IC50 of 11.7 +/- 0.6 microM and had similar potency on steady-state currents to longer glutamate applications. GYKI 52466 had no significant effect on desensitization or deactivation time constants but caused a modest and significant prolongation of onset kinetics at higher concentrations. Cyclothiazide (100 microM) potentiated steady-state currents 25-fold at 100 ms and caused a modest but significant slowing in onset kinetics (601 +/- 49 micros with 1 ms applications) but a more pronounced prolongation of deactivation time constants (5.55 +/- 0.66 ms with 1 ms applications). In 50% of neuronal patches cyclothiazide completely eliminated desensitization. In those patches with residual desensitization, the rate was not significantly different to control (5.36 +/- 0.43 ms with 100 ms applications). Following 100 ms applications of glutamate, GYKI 52466 had IC50s of 11.7 +/- 1.1 microM and 75.1 +/- 7.0 microM in the absence and presence of cyclothiazide (100 microM) respectively. Onset kinetics were slowed from 400 +/- 20 micros to 490 +/- 30 micros by cyclothiazide (100 microM) and then further prolonged by GYKI 52466 (100 microM) to a double exponential function (tau(on1) 1.12 +/- 0.13 ms and tau(on2) 171.5 +/- 36.5 ms). GYKI 52466 did not re-introduce desensitization but concentration-dependently weakened cyclothiazide's prolongation of deactivation time constants (1 ms applications: 5.01 +/- 0.71, 4.47 +/- 0.80 and 2.28 +/- 0.64 ms with GYKI 52466 30, 100 and 300 microM respectively). NBQX reduced peak current responses with an IC50 of 28.2 +/- 1.3 nM. Paradoxically, steady-state currents with 500 ms applications of glutamate were potentiated from 3.3 +/- 1.2 pA to 29.4 +/- 6.4 pA by NBQX (1 nM). Higher concentrations of NBQX then antagonized this potentiated response. The potency of NBQX in antagonizing steady-state currents to 500 ms applications of glutamate (IC50 120.9 +/- 30.2 nM) was 2-fold less than following 100 ms applications (IC50 67.7 +/- 2.6 nM). NBQX had no effect on rapid onset, desensitization or deactivation time constants. However, a slow relaxation of inhibition was seen with longer applications. NBQX was 2-5-fold less potent against inward currents in the presence of cyclothiazide (100 microM) depending on the application duration but had no effect on the rapid onset, desensitization or deactivation time constants. The same relaxation of inhibition was seen as with NBQX alone. NBQX (1 microM) reduced AMPA receptor-mediated EPSC amplitude to 7 +/- 1% of control with no effect on kinetics. Cyclothiazide (330 microM) caused a 2.8-fold prolongation of the decay time constant (control 26.6 +/- 2.2 ms, cyclothiazide 74.2 +/- 7.6 ms, n = 9). Additional application of NBQX (1 microM) partly reversed this prolongation to 1.9 fold (47.7 +/- 2.5 ms, n = 5). These results support previous findings that cyclothiazide also allosterically influences AMPA receptor agonist/antagonist recognition sites. There were no interactions between NBQX and cyclothiazide on desensitization or deactivation time constants of glutamate-induced currents but clear interactions on EPSC deactivation kinetics. This raises the possibility that the interactions of NBQX, GYKI 52466 and cyclothiazide on AMPA-receptor-mediated EPSC kinetics observed are due to modulation of glutamate-release at presynaptic AMPA receptors.


Subject(s)
Anti-Anxiety Agents/pharmacology , Benzodiazepines , Benzothiadiazines/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Quinoxalines/pharmacology , Receptors, AMPA/drug effects , Animals , Drug Interactions , Glutamic Acid/pharmacology , Hippocampus/metabolism , Membrane Potentials/drug effects , Neurons/metabolism , Patch-Clamp Techniques , Rats
4.
Neuropharmacology ; 37(6): 719-27, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9707285

ABSTRACT

The NMDA receptor antagonistic effects of budipine were assessed using concentration- and patch-clamp techniques on cultured striatal, hippocampal, cortical and superior colliculus neurones. Inward current responses of striatal neurones to NMDA (200 microM) at -70 mV were antagonized by budipine in a concentration-dependent manner (50% inhibitory concentration (IC50) 59.4 +/- 10.7 microM, n = 17) with 24 times lower potency than memantine but similar potency to amantadine. In striatal neurones, budipine blocked outward currents at +70 mV with an IC50 of 827 microM, suggesting that the binding site is less deep in the channel (delta = 0.45) than for memantine. However, more detailed analysis of the fractional block by budipine 300 microM in hippocampal neurones gave a delta-value of 0.90, but revealed that 28% block is mediated at a voltage-independent site. This voltage-insensitive site was accessible in the absence of agonist. Budipine exhibited concentration-dependent open channel blocking kinetics (kappa(on) = 0.71 x 10(4) M(-1) s(-1)) whereas the fast offset rate was concentration-independent (kappa(off) = 0.63 s(-1)). Calculation of the ratio kappa(off)/kappa(on) revealed an apparent Kd value of 88.7 microM. Budipine, memantine and amantadine had similar effects against NMDA-induced currents in cultured hippocampal, cortical and superior colliculus neurones, although amantadine was somewhat more potent in cultured striatal neurones. The relevance of NMDA receptor antagonism to the anti-Parkinsonian effects of budipine remains to be established.


Subject(s)
Antiparkinson Agents/pharmacology , Brain/drug effects , Neurons/drug effects , Piperidines/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Amantadine/pharmacology , Animals , Brain/physiology , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Embryo, Mammalian , Hippocampus/drug effects , Hippocampus/physiology , Memantine/pharmacology , Neostriatum/drug effects , Neostriatum/physiology , Neurons/physiology , Patch-Clamp Techniques , Rats , Superior Colliculi/drug effects , Superior Colliculi/physiology
5.
FEBS Lett ; 404(2-3): 294-8, 1997 Mar 10.
Article in English | MEDLINE | ID: mdl-9119082

ABSTRACT

P2X receptors are ion channels gated by extracellular ATP. We report here cloning of a P2X(2) receptor splice variant (P2X(2-2)) carrying a 207 bp deletion in the intracellular C-terminus and the analysis of the corresponding genomic structure of the P2X(2) gene. P2X(2-2) is as highly expressed as the original P2X(2) sequence in various tissues. ATP-activated currents mediated by heterologous expressed P2X(2) or P2X(2-2) receptors showed significant differences in desensitization time constants and steady-state currents in the continuous presence of ATP. These results imply functional differences between cells differentially expressing these P2X(2) isoforms.


Subject(s)
Alternative Splicing , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/pharmacology , Amino Acid Sequence , Animals , Base Sequence , Brain/metabolism , Cell Line , Female , Genetic Variation , Humans , Intestinal Mucosa/metabolism , Kidney/metabolism , Membrane Potentials/drug effects , Molecular Sequence Data , Mutagenesis, Site-Directed , Oocytes/physiology , Organ Specificity , Organ of Corti/metabolism , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, Purinergic P2/biosynthesis , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2X2 , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Deletion , Spleen/metabolism , Transfection , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL