Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(25): 7044-7056, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37389270

ABSTRACT

Determining the factors that influence and can help predict energetic material sensitivity has long been a challenge in the explosives community. Decades of literature reports identify a multitude of factors both chemical and physical that influence explosive sensitivity; however no unifying theory has been observed. Recent work by our team has demonstrated that the kinetics of "trigger linkages" (i.e., the weakest bonds in the energetic material) showed strong correlations with experimental drop hammer impact sensitivity. These correlations suggest that the simple kinetics of the first bonds to break are good indicators for the reactivity observed in simple handling sensitivity tests. Herein we report the synthesis of derivatives of the explosive pentaerythritol tetranitrate (PETN) in which one, two or three of the nitrate ester functional groups are substituted with an inert group. Experimental and computational studies show that explosive sensitivity correlates well with Q (heat of explosion), due to the change in the number of trigger linkages removed from the starting material. In addition, this correlation appears more significant than other observed chemical or physical effects imparted on the material by different inert functional groups, such as heat of formation, heat of explosion, heat capacity, oxygen balance, and the crystal structure of the material.

2.
Inorg Chem ; 61(5): 2391-2401, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35073063

ABSTRACT

Metal-ligand cooperativity (MLC), a phenomenon that leverages reactive ligands to promote synergistic reactions with metals, has proven to be a powerful approach to achieving new and unprecedented chemical transformations with metal complexes. While many examples of MLC are known with a wide range of substrates, experimentally quantifying how ligand modifications affect MLC binding strength remains a challenge. Here we describe how cyclic voltammetry (CV) was used to quantify differences in MLC binding strength in a series of square-pyramidal Ru complexes. This method relies on using multifunctional ligands (those capable of both MLC and ligand-centered redox activity) as electrochemical reporters of MLC binding strength. The synthesis and characterization of Ru complexes with three different redox-active tetradentate ligands and two different ancillary phosphines (PPh3 and PCy3) are described. Titration CV studies conducted using BH3·THF with BH3 as a model MLC substrate allowed ΔGMLC to be quantified for each complex. Compared to our base triaryl ligand, increasing π conjugation in the backbone of the redox-active ligand enhanced MLC binding, whereas increasing π conjugation in the flanking groups decreased the MLC binding strength. Structures and spectroscopic data collected for the isolated MLC complexes are also described along with supporting DFT calculations that were used to illuminate electronic factors that likely account for the observed differences in the MLC binding strength. These results demonstrate how redox-active ligands and CV can be used to quantify subtle differences in the MLC binding strength across a series of structurally related complexes with different ligand modifications.

3.
Inorg Chem ; 59(15): 10845-10853, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32639726

ABSTRACT

Metal-ligand cooperativity (MLC) relies on chemically reactive ligands to assist metals with small-molecule binding and activation, and it has facilitated unprecedented examples of catalysis with metal complexes. Despite growing interest in combining ligand-centered chemical and redox reactions for chemical transformations, there are few studies demonstrating how chemically engaging redox active ligands in MLC affects their electrochemical properties when bound to metals. Here we report stepwise changes in the redox activity of model Ru complexes as zero, one, and two BH3 molecules undergo MLC binding with a triaryl noninnocent N2S2 ligand derived from o-phenylenediamine (L1). A similar series of Ru complexes with a diaryl N2S2 ligand with ethylene substituted in place of phenylene (L2) is also described to evaluate the influence of the o-phenylenediamine subunit on redox activity and MLC. Cyclic voltammetry (CV) studies and density functional theory (DFT) calculations show that MLC attenuates ligand-centered redox activity in both series of complexes, but electron transfer is still achieved when only one of the two redox-active sites on the ligands is chemically engaged. The results demonstrate how incorporating more than one multifunctional reactive site could be an effective strategy for maintaining redox noninnocence in ligands that are also chemically reactive and competent for MLC.

4.
Inorg Chem ; 58(19): 12756-12774, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31490065

ABSTRACT

The continued development of redox-active ligands requires an understanding as to how ligand modifications and related factors affect the locus of redox activity and spin density in metal complexes. Here we describe the synthesis, characterization, and electronic structure of nickel complexes containing triaryl NNNN (1) and SNNS (2) ligands derived from o-phenylenediamine. The tetradentate ligands in 1 and 2 were investigated and compared to those in metal complexes with compositionally similar ligands to determine how ligand-centered redox properties change when redox-active flanking groups are replaced with redox-innocent NMe2 or SMe. A derivative of 2 in which the phenylene backbone was replaced with ethylene (3) was also prepared to interrogate the importance of o-phenylenediamine for ligand-centered redox activity. Cyclic voltammograms collected for 1 and 2 revealed two fully reversible ligand-centered redox events. Remarkably, several quasi-reversible ligand-centered redox waves were also observed for 3 despite the absence of the o-phenylenediamine subunit. Oxidizing 1 and 2 with silver salts containing different counteranions (BF4-, OTf-, NTf2-) allowed the electrochemically generated complexes to be analyzed as a function of different oxidation states using single-crystal X-ray diffraction (XRD), EPR spectroscopy, and S K-edge X-ray absorption spectroscopy. The experimental data are corroborated by DFT calculations, and together, they reveal how the location of unpaired spin density and electronic structure in singly and doubly oxidized salts of 1 and 2 varies depending on the coordinating ability of the counteranions and exogenous ligands such as pyridine.

5.
Angew Chem Int Ed Engl ; 58(36): 12451-12455, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31271502

ABSTRACT

Bond distance is a common structural metric used to assess changes in metal-ligand bonds, but it is not clear how sensitive changes in bond distances are with respect to changes in metal-ligand covalency. Here we report ligand K-edge XAS studies on Ni and Pd complexes containing different phosphorus(III) ligands. Despite the large number of electronic and structural permutations, P K-edge pre-edge peak intensities reveal a remarkable correlation that spectroscopically quantifies the linear interdependence of covalent M-P σ bonding and bond distance. Cl K-edge studies conducted on many of the same Ni and Pd compounds revealed a poor correlation between M-Cl bond distance and covalency, but a strong correlation was established by analyzing Cl K-edge data for Ti complexes with a wider range of Ti-Cl bond distances. Together these results establish a quantitative framework to begin making more accurate assessments of metal-ligand covalency using bond distances from readily-available crystallographic data.

6.
Angew Chem Int Ed Engl ; 58(21): 6993-6998, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30901511

ABSTRACT

Constraining σ3 -P compounds in nontrigonal, entatic geometries has proven to be an effective strategy for promoting biphilic oxidative addition reactions more typical of transition metals. Although qualitative descriptions of the impact of structure and symmetry on σ3 -P complexes have been proposed, electronic structure variations responsible for biphilic reactivity have yet to be elucidated experimentally. Reported here are P K-edge XANES data and complementary TDDFT calculations for a series of structurally modified P(N)3 complexes that both validate and quantify electronic structure variations proposed to give rise to biphilic reactions at phosphorus. These data are presented alongside experimentally referenced electronic structure calculations that reveal nontrigonal structures predicted to further enhance biphilic reactivity in σ3 -P ligands and catalysts.


Subject(s)
Organophosphorus Compounds/chemistry , Phosphorus/chemistry , Transition Elements/chemistry , Catalysis , Ligands , Models, Molecular , Oxidation-Reduction , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...