Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(34): 12776-12784, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37594455

ABSTRACT

Determining sample similarity underlies many foundational principles in analytical chemistry. For example, calibration models are unsuitable to predict outliers. Calibration transfer methods assume a moderate degree of sample and measurement dissimilarities between a calibration set and target prediction samples. Classification approaches link target sample similarities to groups of similar class samples. Although similarity is ubiquitous in analytical chemistry and everyday life, quantifying sample similarity is without a straightforward solution, especially when target domain samples are unlabeled and the only known features are measurable, such as spectra (the focus of this paper). The process proposed to assess sample similarity integrates spectral similarity information with contextual considerations among source analyte contents, model, and analyte predictions. This hybrid approach named the physicochemical responsive integrated similarity measure (PRISM) amplifies hidden-but-essential physicochemical properties encoded within respective spectra. PRISM is tested on four near-infrared (NIR) data sets for four diverse application areas to show efficacy. These applications are the assessment of prediction reliability and model updating for model generalizability, outlier detection, and basic matrix matching evaluation. Discussion is provided on adapting PRISM to classification problems. Results indicate that PRISM collects large amounts of similarity information and effectively integrates it to produce a quantitative similarity evaluation between the target sample and a source domain. The approach is also useful for biological samples with additional physiochemical variations. While PRISM is dynamically tested on NIR data, parts of PRISM were previously applied to other data types, and PRISM should be applicable to other measurement systems perturbed by matrix effects.

2.
Anal Chem ; 93(28): 9688-9696, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34236832

ABSTRACT

Updating a calibration model formed in original (primary) sample and spectral measurement conditions to predict analyte values in novel (secondary) conditions is an essential activity in analytical chemistry in order to avoid a complete recalibration. Established model updating methods require sample analyte reference values for a small set of secondary domain samples (labeled data) to be used in updating processes. Because obtaining reference values is time consuming and is the costly part of any calibration, methods are needed that do not require labeled secondary samples, thereby allowing on demand model updating. This paper compares model updating methods with and without labeled secondary samples. A hybrid model updating approach is also developed and evaluated. Unfortunately, a major impediment to adapting a model without secondary analyte reference values has been model selection. Because multiple tuning parameters are commonly involved in model updating methods, thousands of models are formed, making model selection complex. A recently developed framework is evaluated for automatic model selection of several two to three tuning parameter-based model updating methods without secondary analyte reference values (labels). The model selection method is based on model diversity and prediction similarity (MDPS) of the unlabeled samples to be predicted. The new secondary samples to be predicted can be used to form the updated models and again to select the final predicting models. Because models are formed and selected on demand to directly predict target samples, complicated cross-validation processes are not needed. Four near-infrared data sets covering 40 model updating situations are evaluated showing that MDPS can select reliable updated models outperforming or rivaling prediction errors from total recalibrations with secondary reference values.


Subject(s)
Calibration , Reference Values
3.
J Chem Inf Model ; 61(5): 2220-2230, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33900749

ABSTRACT

Predictive modeling (calibration or training) with various data formats, such as near-infrared (NIR) spectra and quantitative structure-activity relationship (QSAR) data, provides essential information if a proper model is selected. Similarly, with a general model selection approach, spectral model maintenance (updating) from original modeling conditions to new conditions can be performed for dynamic modeling. Fundamental modeling (partial least-squares (PLS) and others) and maintenance processes (domain adaptation or transfer learning and others) require selection of tuning parameter(s) values to isolate models that can accurately predict new samples or molecules, e.g., number of PLS latent variables to predict analyte concentration. Regardless of the modeling task, model selection is complex and without a reliable protocol. Tuning parameter selection typically depends on only one model quality measure assessing model bias using prediction accuracy. Developed in this paper is a generic model selection process using concepts from consensus modeling and QSAR activity landscapes. It is a consensus filtering approach that prioritizes model diversity (MD) while conserving prediction similarity (PS) fused with a common bias-variance trade-off measure. A significant feature of MDPS is that a cross-validation scheme is not needed because models are selected relative to predicting new samples or molecules, i.e., model selection uses unlabeled samples (without reference values) for active predictions. The versatility and reliability of MDPS model selection is shown using four NIR data sets and a QSAR data set. The study also substantiates the Rashomon effect where there is not one best model tuning parameter value that provides accurate predictions.


Subject(s)
Quantitative Structure-Activity Relationship , Calibration , Least-Squares Analysis , Reference Values , Reproducibility of Results
4.
Ultrason Sonochem ; 73: 105502, 2021 May.
Article in English | MEDLINE | ID: mdl-33652291

ABSTRACT

Recent interest in biomass-based fuel blendstocks and chemical compounds has stimulated research efforts on conversion and upgrading pathways, which are considered as critical commercialization drivers. Existing pre-/post-conversion pathways are energy intense (e.g., pyrolysis and hydrogenation) and economically unsustainable, thus, more efficient process solutions can result in supporting the renewable fuels and green chemicals industry. This study proposes a process, including biomass conversion and bio-oil upgrading, using mixed fast and slow pyrolysis conversion pathway, as well as sono-catalytic transfer hydrogenation (SCTH) treatment process. The proposed SCTH treatment employs ammonium formate as a hydrogen transfer additive and palladium supported on carbon as the catalyst. Utilizing SCTH, bio-oil molecular bonds were broken and restructured via the phenomena of cavitation, rarefaction, and hydrogenation, with the resulting product composition, investigated using ultimate analysis and spectroscopy. Additionally, an in-line characterization approach is proposed, using near-infrared spectroscopy, calibrated by multivariate analysis and modeling. The results indicate the potentiality of ultrasonic cavitation, catalytic transfer hydrogenation, and SCTH for incorporating hydrogen into the organic phase of bio-oil. It is concluded that the integration of pyrolysis with SCTH can improve bio-oil for enabling the production of fuel blendstocks and chemical compounds from lignocellulosic biomass.


Subject(s)
Hydrogen/chemistry , Oils/chemistry , Pyrolysis , Ultrasonic Waves , Carbon/chemistry , Catalysis , Formates/chemistry , Palladium/chemistry , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...