Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Kidney Int ; 105(2): 328-337, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38008161

ABSTRACT

Renin, an aspartate protease, regulates the renin-angiotensin system by cleaving its only known substrate angiotensinogen to angiotensin. Recent studies have suggested that renin may also cleave complement component C3 to activate complement or contribute to its dysregulation. Typically, C3 is cleaved by C3 convertase, a serine protease that uses the hydroxyl group of a serine residue as a nucleophile. Here, we provide seven lines of evidence to show that renin does not cleave C3. First, there is no association between renin plasma levels and C3 levels in patients with C3 Glomerulopathies (C3G) and atypical Hemolytic Uremic Syndrome (aHUS), implying that serum C3 consumption is not increased in the presence of high renin. Second, in vitro tests of C3 conversion to C3b do not detect differences when sera from patients with high renin levels are compared to sera from patients with normal/low renin levels. Third, aliskiren, a renin inhibitor, does not block abnormal complement activity introduced by nephritic factors in the fluid phase. Fourth, aliskiren does not block dysregulated complement activity on cell surfaces. Fifth, recombinant renin from different sources does not cleave C3 even after 24 hours of incubation at 37 °C. Sixth, direct spiking of recombinant renin into sera samples of patients with C3G and aHUS does not enhance complement activity in either the fluid phase or on cell surfaces. And seventh, molecular modeling and docking place C3 in the active site of renin in a position that is not consistent with a productive ground state complex for catalytic hydrolysis. Thus, our study does not support a role for renin in the activation of complement.


Subject(s)
Complement Activation , Complement C3 , Kidney Diseases , Renin , Humans , Amides , Atypical Hemolytic Uremic Syndrome , Complement C3/metabolism , Complement C3-C5 Convertases/metabolism , Complement Pathway, Alternative , Fumarates , Renin/antagonists & inhibitors , Renin/blood , Renin/metabolism
2.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014173

ABSTRACT

Human RAD52 1,2 is a multifunctional DNA repair protein involved in several cellular events that support genome stability including protection of stalled DNA replication forks from excessive degradation 3-7 . In its gatekeeper role, RAD52 binds to and stabilizes stalled replication forks during replication stress protecting them from reversal by SMARCAL1 5 . The structural and molecular mechanism of the RAD52-mediated fork protection remains elusive. Here, using P1 nuclease sensitivity, biochemical and single-molecule analyses we show that RAD52 dynamically remodels replication forks through its strand exchange activity. The presence of the ssDNA binding protein RPA at the fork modulates the kinetics of the strand exchange without impeding the reaction outcome. Mass photometry and single-particle cryo-electron microscopy show that the replication fork promotes a unique nucleoprotein structure containing head-to-head arrangement of two undecameric RAD52 rings with an extended positively charged surface that accommodates all three arms of the replication fork. We propose that the formation and continuity of this surface is important for the strand exchange reaction and for competition with SMARCAL1.

3.
Chemistry ; 29(40): e202301621, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37285583

ABSTRACT

Invited for the cover of this issue is the group of Michael Ashley Spies at the University of Iowa. The image depicts how mapping allosteric structure-activity relationships reveals the nexus between the active site and the remote allosteric pocket. Read the full text of the article at 10.1002/chem.202300872.

4.
NAR Cancer ; 5(2): zcad018, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37139244

ABSTRACT

RAD52 protein is a coveted target for anticancer drug discovery. Similar to poly-ADP-ribose polymerase (PARP) inhibitors, pharmacological inhibition of RAD52 is synthetically lethal with defects in genome caretakers BRCA1 and BRCA2 (∼25% of breast and ovarian cancers). Emerging structure activity relationships for RAD52 are complex, making it challenging to transform previously identified disruptors of the RAD52-ssDNA interaction into drug-like leads using traditional medicinal chemistry approaches. Using pharmacophoric informatics on the RAD52 complexation by epigallocatechin (EGC), and the Enamine in silico REAL database, we identified six distinct chemical scaffolds that occupy the same physical space on RAD52 as EGC. All six were RAD52 inhibitors (IC50 ∼23-1200 µM) with two of the compounds (Z56 and Z99) selectively killing BRCA-mutant cells and inhibiting cellular activities of RAD52 at micromolar inhibitor concentrations. While Z56 had no effect on the ssDNA-binding protein RPA and was toxic to BRCA-mutant cells only, Z99 inhibited both proteins and displayed toxicity towards BRCA-complemented cells. Optimization of the Z99 scaffold resulted in a set of more powerful and selective inhibitors (IC50 ∼1.3-8 µM), which were only toxic to BRCA-mutant cells. RAD52 complexation by Z56, Z99 and its more specific derivatives provide a roadmap for next generation of cancer therapeutics.

5.
Chemistry ; 29(40): e202300872, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37005499

ABSTRACT

Caspase-7 (C7), a cysteine protease involved in apoptosis, is a valuable drug target for its role in human diseases (e. g., Parkinson's, Alzheimer's, sepsis). The C7 allosteric site has great potential for small-molecule targeting, but numerous drug discovery efforts have identified precious few allosteric inhibitors. Here we present the first selective, drug-like inhibitor of C7 along with several other improved inhibitors based on our previous fragment hit. We also provide a rational basis for the impact of allosteric binding on the C7 catalytic cycle by using an integrated approach including X-ray crystallography, stopped-flow kinetics, and molecular dynamics simulations. Our findings suggest allosteric binding disrupts C7 pre-acylation by neutralization of the catalytic dyad, displacement of substrate from the oxyanion hole, and altered dynamics of substrate binding loops. This work advances drug targeting efforts and bolsters our understanding of allosteric structure-activity relationships (ASARs).


Subject(s)
Molecular Dynamics Simulation , Humans , Caspase 7/metabolism , Allosteric Regulation , Protein Conformation , Allosteric Site , Crystallography, X-Ray
6.
Forensic Sci Int ; 345: 111616, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36907107

ABSTRACT

Determining the post-mortem interval (PMI) is often a critical goal in forensic casework. Consequently, the discipline of forensic taphonomy has involved considerable research efforts towards achieving this goal, with substantial strides made in the past 40 years. Importantly, quantification of decompositional data (and the models derived from them) and standardisation in experimental protocols are being increasingly recognised as key components of this drive. However, despite the discipline's best efforts, significant challenges remain. Still lacking are standardisation of many core components of experimental design, forensic realism in experimental design, true quantitative measures of the progression of decay, and high-resolution data. Without these critical elements, large-scale, synthesised multi-biogeographically representative datasets - necessary for building comprehensive models of decay to precisely estimate PMI - remain elusive. To address these limitations, we propose the automation of taphonomic data collection. We present the world's first reported fully automated, remotely operable forensic taphonomic data collection system, inclusive of technical design details. Through laboratory testing and field deployments, the apparatus substantially reduced the cost of actualistic (field-based) forensic taphonomic data collection, improved data resolution, and provided for more forensically realistic experimental deployments and simultaneous multi-biogeographic experiments. We argue that this device represents a quantum leap in experimental methodology in this field, paving the way for the next generation of forensic taphonomic research and, we hope, attainment of the elusive goal of precise estimation of PMI.


Subject(s)
Paleontology , Postmortem Changes , Animals , Models, Animal , Forensic Medicine , Automation , Forensic Pathology/methods
7.
Hum Brain Mapp ; 44(6): 2654-2663, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36840505

ABSTRACT

Seasonal changes in neurotransmitter systems have been demonstrated in imaging studies and are especially noticeable in diseased states such as seasonal affective disorder (SAD). These modulatory neurotransmitters, such as serotonin, are influencing glutamatergic and GABAergic neurotransmission. Furthermore, central components of the circadian pacemaker are regulated by GABA (the suprachiasmatic nucleus) or glutamate (e.g., the retinohypothalamic tract). Therefore, we explored seasonal differences in the GABAergic and glutamatergic system in 159 healthy individuals using magnetic resonance spectroscopy imaging with a GABA-edited 3D-MEGA-LASER sequence at 3T. We quantified GABA+/tCr, GABA+/Glx, and Glx/tCr ratios (GABA+, GABA+ macromolecules; Glx, glutamate + glutamine; tCr, total creatine) in five different subcortical brain regions. Differences between time periods throughout the year, seasonal patterns, and stationarity were tested using ANCOVA models, curve fitting approaches, and unit root and stationarity tests, respectively. Finally, Spearman correlation analyses between neurotransmitter ratios within each brain region and cumulated daylight and global radiation were performed. No seasonal or monthly differences, seasonal patterns, nor significant correlations could be shown in any region or ratio. Unit root and stationarity tests showed stable patterns of GABA+/tCr, GABA+/Glx, and Glx/tCr levels throughout the year, except for hippocampal Glx/tCr. Our results indicate that neurotransmitter levels of glutamate and GABA in healthy individuals are stable throughout the year. Hence, despite the important correction for age and gender in the analyses of MRS derived GABA and glutamate, a correction for seasonality in future studies does not seem necessary. Future investigations in SAD and other psychiatric patients will be of high interest.


Subject(s)
Glutamic Acid , Glutamine , Humans , Magnetic Resonance Spectroscopy/methods , Seasons , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , gamma-Aminobutyric Acid/analysis , Neurotransmitter Agents , Receptors, Antigen, T-Cell
8.
DNA Repair (Amst) ; 120: 103421, 2022 12.
Article in English | MEDLINE | ID: mdl-36327799

ABSTRACT

BRCA-ness phenotype, a signature of many breast and ovarian cancers, manifests as deficiency in homologous recombination, and as defects in protection and repair of damaged DNA replication forks. A dependence of such cancers on DNA repair factors less important for survival of BRCA-proficient cells, offers opportunities for development of novel chemotherapeutic interventions. The first drugs targeting BRCA-deficient cancers, poly-ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of advanced, chemotherapy resistant cancers in patients with BRCA1/2 germline mutations. Nine additional proteins that can be targeted to selectively kill BRCA-deficient cancer cells have been identified. Among them, a DNA repair protein RAD52 is an especially attractive target due to general tolerance of the RAD52 loss of function, and protective role of an inactivating mutation. Yet, the effective pharmacological inhibitors of RAD52 have not been forthcoming. In this review, we discuss advances in the state of our knowledge of the RAD52 structure, activities and cellular functions, with a specific focus on the features that make RAD52 an attractive, but difficult drug target.


Subject(s)
BRCA2 Protein , Ovarian Neoplasms , Humans , Female , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , BRCA1 Protein/metabolism , DNA Repair , Ovarian Neoplasms/genetics , Drug Discovery , Structure-Activity Relationship
9.
Nat Commun ; 13(1): 2431, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35508475

ABSTRACT

Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼40%) already for a small voltage bias (∼200 µV) thanks to the small energy scale of the system: the Al superconducting gap. With the help of an analytical theoretical model we can link the maximum rectification to the spin polarization (P) of the barrier and describe the quasi-ideal Shockley-diode behavior of the junction. This cryogenic spintronic rectifier is promising for the application in highly-sensitive radiation detection for which two different configurations are evaluated. In addition, the superconducting diode may pave the way for future low-dissipation and fast superconducting electronics.

10.
Org Biomol Chem ; 20(15): 3183-3200, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35348173

ABSTRACT

A practical divergent synthetic approach is reported for the library of regio- and stereoisomers of glutamic acid analogs built on the spiro[3.3]heptane scaffold. Formation of the spirocyclic scaffold was achieved starting from a common precursor - an O-silylated 2-(hydroxymethyl)cyclobutanone derivative. Its olefination required using the titanium-based Tebbe protocol since the standard Wittig reaction did not work with this particular substrate. The construction of the second cyclobutane ring of the spirocyclic system was achieved through either subsequent dichloroketene addition or Meinwald oxirane rearrangement as the key synthetic steps, depending on the substitution patterns in the target compounds (1,6- or 1,5-, respectively). Further modified Strecker reaction of the resulting racemic spirocyclic ketones with the Ellman's sulfinamide as a chiral auxiliary had low to moderate diastereoselectivity; nevertheless, all stereoisomers were isolated in pure form via chromatographic separation, and their absolute configuration was confirmed by X-ray crystallography. Members of the library were tested for the inhibitory activity against H. pylori glutamate racemase.


Subject(s)
Glutamic Acid , Spiro Compounds , Crystallography, X-Ray , Ketones/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Stereoisomerism
11.
Psychoneuroendocrinology ; 138: 105683, 2022 04.
Article in English | MEDLINE | ID: mdl-35176535

ABSTRACT

Sex hormones affect the GABAergic and glutamatergic neurotransmitter system as demonstrated in animal studies. However, human research has mostly been correlational in nature. Here, we aimed at substantiating causal interpretations of the interaction between sex hormones and neurotransmitter function by using magnetic resonance spectroscopy imaging (MRSI) to study the effect of gender-affirming hormone treatment (GHT) in transgender individuals. Fifteen trans men (TM) with a DSM-5 diagnosis of gender dysphoria, undergoing GHT, and 15 age-matched cisgender women (CW), receiving no therapy, underwent MRSI before and after at least 12 weeks. Additionally, sex differences in neurotransmitter levels were evaluated in an independent sample of 80 cisgender men and 79 cisgender women. Mean GABA+ (combination of GABA and macromolecules) and Glx (combination of glutamate and glutamine) ratios to total creatine (GABA+/tCr, Glx/tCr) were calculated in five predefined regions-of-interest (hippocampus, insula, pallidum, putamen and thalamus). Linear mixed models analysis revealed a significant measurement by gender identity effect (pcorr. = 0.048) for GABA+/tCr ratios in the hippocampus, with the TM cohort showing decreased GABA+/tCr levels after GHT compared to CW. Moreover, analysis of covariance showed a significant sex difference in insula GABA+/tCr ratios (pcorr. = 0.049), indicating elevated GABA levels in cisgender women compared to cisgender men. Our study demonstrates GHT treatment-induced GABA+/tCr reductions in the hippocampus, indicating hormone receptor activation on GABAergic cells and testosterone-induced neuroplastic processes within the hippocampus. Moreover, elevated GABA levels in the female compared to the male insula highlight the importance of including sex as factor in future MRS studies. DATA AVAILABILITY STATEMENT: Due to data protection laws processed data is available from the authors upon reasonable request. Please contact rupert.lanzenberger@meduniwien.ac.at with any questions or requests.


Subject(s)
Glutamic Acid , Transgender Persons , Brain/pathology , Female , Gender Identity , Gonadal Steroid Hormones , Humans , Male , Neurotransmitter Agents , Receptors, Antigen, T-Cell , Testosterone , gamma-Aminobutyric Acid
12.
Disabil Rehabil ; 44(8): 1234-1242, 2022 04.
Article in English | MEDLINE | ID: mdl-32723115

ABSTRACT

PURPOSE: We aimed to develop a modular Core Set based on the International Classification of Functioning, Disability and Health (ICF) for describing functioning in patients with substance use disorders (SUDs). To match the structure of the German health service system, the Core Set was split into modules for different service segments. METHODS: We followed a consensus process including several preparatory studies. To identify candidate ICF categories, we performed an ICF linking of guideline-recommended assessments, patient focus groups and patient and expert surveys. Categories were prioritized for different service segments and compiled into preliminary modules. The Core Set was tested in 13 treatment sites. Health professionals rated each category's relevance, and contents of the Modular ICF-based Core Set for SUDs (MCSS) were compared to patient-reported treatment goals. An advisory board decided on revisions to the MCSS. RESULTS: The MCSS consists of a basic module (25 categories) and five additional modules for these treatment segments: counselling (8), qualified withdrawal (6), orientation (7), rehabilitation (32), and social integration services (10). CONCLUSIONS: The MCSS provides a framework for harmonizing communication, documentation and interface management in German SUD health services. The basic module, consisting of 25 categories, can be employed as a Brief ICF Core Set.Implications for rehabilitationThe MCSS can serve as a standard for describing functioning in patients with SUDs in Germany, as well as harmonize communication and reporting of treatment relevant information.In clinical practice, the MCSS can be used for the structured assessment of psychosocial problems and participation restrictions, goal setting, and outcome evaluation.Although the MCSS was developed in Germany, its proximity to the themes frequently identified in the literature regarding SUDs internationally suggests that it may be of use in other countries as well.The basic module may be employed as a Brief ICF Core Set.


Subject(s)
Disabled Persons , International Classification of Functioning, Disability and Health , Activities of Daily Living , Disability Evaluation , Disabled Persons/rehabilitation , Germany , Humans , Surveys and Questionnaires
13.
Cereb Cortex ; 32(16): 3516-3524, 2022 08 03.
Article in English | MEDLINE | ID: mdl-34952543

ABSTRACT

The monoamine oxidase A (MAO-A) is integral to monoamine metabolism and is thus relevant to the pathophysiology of various neuropsychiatric disorders; however, associated gene-enzyme relations are not well understood. This study aimed to unveil genes coexpressed with MAO-A. Therefore, 18 179 mRNA expression maps (based on the Allen Human Brain Atlas) were correlated with the cerebral distribution volume (VT) of MAO-A assessed in 36 healthy subjects (mean age ± standard deviation: 32.9 ± 8.8 years, 18 female) using [11C]harmine positron emission tomography scans. Coexpression analysis was based on Spearman's ρ, over-representation tests on Fisher's exact test with false discovery rate (FDR) correction. The analysis revealed 35 genes in cortex (including B-cell translocation gene family, member 3, implicated in neuroinflammation) and 247 genes in subcortex (including kallikrein-related peptidase 10, implicated in Alzheimer's disease). Significantly over-represented Gene Ontology terms included "neuron development", "neuron differentiation", and "cell-cell signaling" as well as "axon" and "neuron projection". In vivo MAO-A enzyme distribution and MAOA expression did not correlate in cortical areas (ρ = 0.08) while correlation was found in subcortical areas (ρ = 0.52), suggesting influences of region-specific post-transcriptional and -translational modifications. The herein reported information could contribute to guide future genetic studies, deepen the understanding of associated pathomechanisms and assist in the pursuit of novel therapeutic targets.


Subject(s)
Brain , Monoamine Oxidase , Positron-Emission Tomography , Adult , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes , Female , Harmine/metabolism , Humans , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Positron-Emission Tomography/methods
14.
Commun Chem ; 42021.
Article in English | MEDLINE | ID: mdl-35673630

ABSTRACT

One of our greatest challenges in drug design is targeting cryptic allosteric pockets in enzyme targets. Drug leads that do bind to these cryptic pockets are often discovered during HTS campaigns, and the mechanisms of action are rarely understood. Nevertheless, it is often the case that the allosteric pocket provides the best option for drug development against a given target. In the current studies we present a successful way forward in rationally exploiting the cryptic allosteric pocket of H. pylori glutamate racemase, an essential enzyme in this pathogen's life cycle. A wide range of computational and experimental methods are employed in a workflow leading to the discovery of a series of natural product allosteric inhibitors which occupy the allosteric pocket of this essential racemase. The confluence of these studies reveals a fascinating source of the allosteric inhibition, which centers on the abolition of essential monomer-monomer coupled motion networks.

15.
Commun Chem ; 4(1): 172, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-36697800

ABSTRACT

One of our greatest challenges in drug design is targeting cryptic allosteric pockets in enzyme targets. Drug leads that do bind to these cryptic pockets are often discovered during HTS campaigns, and the mechanisms of action are rarely understood. Nevertheless, it is often the case that the allosteric pocket provides the best option for drug development against a given target. In the current studies we present a successful way forward in rationally exploiting the cryptic allosteric pocket of H. pylori glutamate racemase, an essential enzyme in this pathogen's life cycle. A wide range of computational and experimental methods are employed in a workflow leading to the discovery of a series of natural product allosteric inhibitors which occupy the allosteric pocket of this essential racemase. The confluence of these studies reveals a fascinating source of the allosteric inhibition, which centers on the abolition of essential monomer-monomer coupled motion networks.

17.
ChemMedChem ; 15(4): 376-384, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31876113

ABSTRACT

Glutamate racemases (GR) are members of the family of bacterial enzymes known as cofactor-independent racemases and epimerases and catalyze the stereoinversion of glutamate. D-amino acids are universally important for the proper construction of viable bacterial cell walls, and thus have been repeatedly validated as attractive targets for novel antimicrobial drug design. Significant aspects of the mechanism of this challenging stereoinversion remain unknown. The current study employs a combination of MD and QM/MM computational approaches to show that the GR from H. pylori must proceed via a pre-activation step, which is dependent on the enzyme's flexibility. This mechanism is starkly different from previously proposed mechanisms. These findings have immediate pharmaceutical relevance, as the H. pylori GR enzyme is a very attractive allosteric drug target. The results presented in this study offer a distinctly novel understanding of how AstraZeneca's lead series of inhibitors cripple the H. pylori GR's native motions, via prevention of this critical chemical pre-activation step. Our experimental studies, using SPR, fluorescence and NMR WaterLOGSY, show that H. pylori GR is not inhibited by the uncompetitive mechanism originally put forward by Lundqvist et al.. The current study supports a deep connection between native enzyme motions and chemical reactivity, which has strong relevance to the field of allosteric drug discovery.


Subject(s)
Amino Acid Isomerases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Helicobacter pylori/drug effects , Molecular Dynamics Simulation , Allosteric Regulation/drug effects , Amino Acid Isomerases/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Helicobacter pylori/enzymology , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
18.
Nano Lett ; 19(8): 5506-5514, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31369282

ABSTRACT

We present a comprehensive study of the performance of GaN single-nanowire photodetectors containing an axial p-n junction. The electrical contact to the p region of the diode is made by including a p+/n+ tunnel junction as cap structure, which allows the use of the same metal scheme to contact both ends of the nanowire. Single-nanowire devices present the rectifying current-voltage characteristic of a p-n diode but their photovoltaic response to ultraviolet radiation scales sublinearly with the incident optical power. This behavior is attributed to the dominant role of surface states. Nevertheless, when the junction is reverse biased, the role of the surface becomes negligible in comparison to the drift of photogenerated carriers in the depletion region. Therefore, the responsivity increases by about 3 orders of magnitude and the photocurrent scales linearly with the excitation. These reverse-biased nanowires display decay times in the range of ∼10 µs, limited by the resistor-capacitor time constant of the setup. Their ultraviolet/visible contrast of several orders of magnitude is suitable for applications requiring high spectral selectivity. When the junction is forward biased, the device behaves as a GaN photoconductor with an increase of the responsivity at the price of a degradation of the time response. The presence of leakage current in some of the wires can be modeled as a shunt resistance which reacts to the radiation as a photoconductor and can dominate the response of the wire even under reverse bias.

19.
Acta Psychiatr Scand ; 139(1): 78-88, 2019 01.
Article in English | MEDLINE | ID: mdl-30291625

ABSTRACT

OBJECTIVES: Clinical variables were investigated in the 'treatment resistant depression (TRD)- III' sample to replicate earlier findings by the European research consortium 'Group for the Study of Resistant Depression' (GSRD) and enable cross-sample prediction of treatment outcome in TRD. EXPERIMENTAL PROCEDURES: TRD was defined by a Montgomery and Åsberg Depression Rating Scale (MADRS) score ≥22 after at least two antidepressive trials. Response was defined by a decline in MADRS score by ≥50% and below a threshold of 22. Logistic regression was applied to replicate predictors for TRD among 16 clinical variables in 916 patients. Elastic net regression was applied for prediction of treatment outcome. RESULTS: Symptom severity (odds ratio (OR) = 3.31), psychotic symptoms (OR = 2.52), suicidal risk (OR = 1.74), generalized anxiety disorder (OR = 1.68), inpatient status (OR = 1.65), higher number of antidepressants administered previously (OR = 1.23), and lifetime depressive episodes (OR = 1.15) as well as longer duration of the current episode (OR = 1.022) increased the risk of TRD. Prediction of TRD reached an accuracy of 0.86 in the independent validation set, TRD-I. CONCLUSION: Symptom severity, suicidal risk, higher number of lifetime depressive episodes, and comorbid anxiety disorder were replicated as the most prominent risk factors for TRD. Significant predictors in TRD-III enabled robust prediction of treatment outcome in TRD-I.


Subject(s)
Antidepressive Agents/pharmacology , Depressive Disorder, Treatment-Resistant/diagnosis , Depressive Disorder, Treatment-Resistant/psychology , Adult , Affective Disorders, Psychotic/diagnosis , Affective Disorders, Psychotic/psychology , Aged , Antidepressive Agents/administration & dosage , Antidepressive Agents/therapeutic use , Anxiety Disorders/diagnosis , Anxiety Disorders/psychology , Clinical Decision Rules , Cross-Sectional Studies , Depressive Disorder, Treatment-Resistant/epidemiology , Episode of Care , Europe/epidemiology , Female , Humans , Inpatients/psychology , Inpatients/statistics & numerical data , Male , Middle Aged , Psychiatric Status Rating Scales , Retrospective Studies , Risk , Severity of Illness Index , Suicidal Ideation , Treatment Outcome
20.
Ultrasonics ; 91: 114-120, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30092397

ABSTRACT

This article revisits the evaluation by a perturbation theory of the modification of the Rayleigh wave velocity under a static loading varying with depth. Two derivations, that have been exposed in the past and presented as comparable, are questioned. A new derivation of the perturbation formula is given by adapting Auld's approach. Validation with exact calculations is provided. The examples cover depth-varying static stress as well as depth-varying third order elastic properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...