Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 165(3): 1092-1104, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24891612

ABSTRACT

Auxin is a phytohormone involved in cell elongation and division. Levels of indole-3-acetic acid (IAA), the primary auxin, are tightly regulated through biosynthesis, degradation, sequestration, and transport. IAA is sequestered in reversible processes by adding amino acids, polyol or simple alcohols, or sugars, forming IAA conjugates, or through a two-carbon elongation forming indole-3-butyric acid. These sequestered forms of IAA alter hormone activity. To gain a better understanding of how auxin homeostasis is maintained, we have generated Arabidopsis (Arabidopsis thaliana) mutants that combine disruptions in the pathways, converting IAA conjugates and indole-3-butyric acid to free IAA. These mutants show phenotypes indicative of low auxin levels, including delayed germination, abnormal vein patterning, and decreased apical dominance. Root phenotypes include changes in root length, root branching, and root hair growth. IAA levels are reduced in the cotyledon tissue but not meristems or hypocotyls. In the combination mutants, auxin biosynthetic gene expression is increased, particularly in the YUCCA/Tryptophan Aminotransferase of Arabidopsis1 pathway, providing a feedback mechanism that allows the plant to compensate for changes in IAA input pathways and maintain cellular homeostasis.

2.
Subcell Biochem ; 69: 257-81, 2013.
Article in English | MEDLINE | ID: mdl-23821153

ABSTRACT

Peroxisomes house many metabolic processes that allow organisms to safely sequester reactions with potentially damaging byproducts. Peroxisomes also produce signaling molecules; in plants, these include the hormones indole-3-acetic acid (IAA) and jasmonic acid (JA). Indole-3-butyric acid (IBA) is a chain-elongated form of the active auxin IAA and is a key tool for horticulturists and plant breeders for inducing rooting in plant cultures and callus. IBA is both made from and converted to IAA, providing a mechanism to maintain optimal IAA levels. Based on genetic analysis and studies of IBA metabolism, IBA conversion to IAA occurs in peroxisomes, and the timing and activity of peroxisomal import and metabolism thereby contribute to the IAA pool in a plant. Four enzymes have been hypothesized to act specifically in peroxisomal IBA conversion to IAA. Loss of these enzymes results in decreased IAA levels, a reduction in auxin-induced gene expression, and strong disruptions in cell elongation resulting in developmental abnormalities. Additional activity by known fatty acid ß-oxidation enzymes also may contribute to IBA ß-oxidation via direct activity or indirect effects. This review will discuss the peroxisomal enzymes that have been implicated in auxin homeostasis and the importance of IBA-derived IAA in plant growth and development.


Subject(s)
Indoleacetic Acids/metabolism , Peroxisomes/metabolism , Plant Development , Plant Growth Regulators/metabolism , Plants/metabolism , Signal Transduction , Homeostasis , Indoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...