Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 3589, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399573

ABSTRACT

Overcoming cellular growth restriction, including the evasion of cellular senescence, is a hallmark of cancer. We report that PAK4 is overexpressed in all human breast cancer subtypes and associated with poor patient outcome. In mice, MMTV-PAK4 overexpression promotes spontaneous mammary cancer, while PAK4 gene depletion delays MMTV-PyMT driven tumors. Importantly, PAK4 prevents senescence-like growth arrest in breast cancer cells in vitro, in vivo and ex vivo, but is not needed in non-immortalized cells, while PAK4 overexpression in untransformed human mammary epithelial cells abrogates H-RAS-V12-induced senescence. Mechanistically, a PAK4 - RELB - C/EBPß axis controls the senescence-like growth arrest and a PAK4 phosphorylation residue (RELB-Ser151) is critical for RELB-DNA interaction, transcriptional activity and expression of the senescence regulator C/EBPß. These findings establish PAK4 as a promoter of breast cancer that can overcome oncogene-induced senescence and reveal a selective vulnerability of cancer to PAK4 inhibition.


Subject(s)
Breast Neoplasms/pathology , Transcription Factor RelB/metabolism , p21-Activated Kinases/metabolism , Animals , Breast/cytology , Breast/pathology , Breast Neoplasms/mortality , Cell Line, Tumor , Cellular Senescence/genetics , Epithelial Cells , Female , Gene Knockdown Techniques , Humans , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Middle Aged , Primary Cell Culture , Prognosis , Xenograft Model Antitumor Assays , p21-Activated Kinases/genetics
2.
J Cell Biol ; 217(6): 1929-1940, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29632027

ABSTRACT

Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive ß1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive ß1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation.


Subject(s)
Focal Adhesions/metabolism , Integrin beta1/metabolism , Cell Line, Tumor , Cytoskeletal Proteins/metabolism , Humans , Protein Transport , Talin/metabolism , Vinculin/metabolism
3.
Oncotarget ; 8(44): 77061-77074, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100370

ABSTRACT

p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in diverse protein networks, including the 14-3-3, proteasome, replication fork, CCT and Arp2/3 complexes. Because PAK4 co-immunoprecipitated most subunits of the Arp2/3 complex, we hypothesized that PAK4 may play a role in Arp2/3 dependent actin regulation. Indeed, we found that PAK4 interacts with and phosphorylates the nucleation promoting factor N-WASP at Ser484/Ser485 and promotes Arp2/3-dependent actin polymerization in vitro. Also, PAK4 ablation in vivo reduced N-WASP Ser484/Ser485 phosphorylation and altered the cellular balance between G- and F-actin as well as the actin organization. By presenting the PAK4 interactome, we here provide a powerful resource for further investigations and as proof of principle, we also indicate a novel mechanism by which PAK4 regulates actin cytoskeleton remodeling.

4.
J Mol Biol ; 429(7): 964-976, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28077285

ABSTRACT

Profilin is vital for actin organisation in eukaryotic cells. It controls actin filament formation by binding monomeric actin and numerous proteins involved in polarised actin assembly. Important for the latter is the interaction surface formed by the N- and C-terminal helices, which pack close to each other on one side of the molecule at a distance from the actin site and mediate binding to poly-proline sequences present in many of the targeted proteins. Via these interactions, profilin contributes to the spatiotemporal control of actin filament growth. Studies of profilin dynamics in living cells by imaging techniques have been hampered by problems to generate fusion constructs with fluorophore proteins without negatively impacting on its poly-proline binding. With the object to circumvent this problem, we have generated an internal fusion of profilin with the green fluorescent variant citrine, here referred to as citrine-profilin. The characterisation of citrine-profilin (CIT-Pfn) demonstrates that it has full capacity to interact with poly-proline and also binds phosphatidylinositol lipids and actin, albeit with 10 times reduced affinity for the latter. Imaging of living cells expressing CIT-Pfn showed a distribution of the fusion protein similar to endogenous profilin. Furthermore, CIT-Pfn rescued the phenotypes observed after the Crispr/Cas9 knockout of the profilin 1 gene, including the lost migratory capacity characterising the knockout cells. Based on this, we conclude that the CIT-Pfn construct will be useful as a tool for displaying profilin localisation in living cells and obtaining information on its dynamic organisation under different conditions and activations of the actin microfilament and microtubule systems.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Peptides/metabolism , Profilins/genetics , Profilins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Actins/metabolism , Humans , Phosphatidylinositols/metabolism , Protein Binding
5.
J Mol Biol ; 427(17): 2757-64, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26101841

ABSTRACT

Chaperonin containing tailless complex polypeptide 1 (CCT) forms a classical chaperonin barrel structure where two rings of subunits surround a central cavity. Each ring consists of eight distinct subunits, creating a complex binding interface that makes CCT unique among the chaperonins. In addition to acting as a multimeric chaperonin, there is increasing evidence indicating that the CCT subunits, when monomeric, possess additional functions. Here we assess the role of the CCT subunits individually, using a GFP (green fluorescent protein) tagging approach to express each of the subunits in their monomeric form in cultured mammalian cells. Over-expression of CCTdelta, but not the other seven CCT subunits, results in the appearance of numerous protrusions at the cell surface. Two point mutations, one in the apical domain and one in the ATP binding pocket of CCTdelta, that abolish protrusion formation have been identified, consistent with the apical domain containing a novel interaction site that is influenced by the ATPase activity in the equatorial domain. Structured illumination microscopy, together with sub-cellular fractionation, reveals that only the wild-type CCTdelta is associated with the plasma membrane, thus connecting spatial organization with surface protrusion formation. Expression of the equivalent subunit in yeast, GFP-Cct4, rescues growth of the temperature-sensitive strain cct4-1 at the non-permissive temperature, indicative of conserved subunit-specific activities for CCTdelta.


Subject(s)
Chaperonin Containing TCP-1/genetics , Chaperonin Containing TCP-1/metabolism , Protein Folding , Pseudopodia/physiology , 3T3 Cells , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chaperonin Containing TCP-1/biosynthesis , Green Fluorescent Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Point Mutation/genetics , Protein Structure, Tertiary , Pseudopodia/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Thiazolidines/pharmacology
6.
PLoS One ; 10(6): e0129229, 2015.
Article in English | MEDLINE | ID: mdl-26068101

ABSTRACT

To explore the conservation of Src homology 3 (SH3) domain-mediated networks in evolution, we compared the specificity landscape of these domains among four yeast species, Saccharomyces cerevisiae, Ashbya gossypii, Candida albicans, and Schizosaccharomyces pombe, encompassing 400 million years of evolution. We first aligned and catalogued the families of SH3-containing proteins in these four species to determine the relationships between homologous domains. Then, we tagged and purified all soluble SH3 domains (82 in total) to perform a quantitative peptide assay (SPOT) for each SH3 domain. All SPOT readouts were hierarchically clustered and we observed that the organization of the SH3 specificity landscape in three distinct profile classes remains conserved across these four yeast species. We also produced a specificity profile for each SH3 domain from manually aligned top SPOT hits and compared the within-family binding motif consensus. This analysis revealed a striking example of binding motif divergence in a C. albicans Rvs167 paralog, which cannot be explained by overall SH3 sequence or interface residue divergence, and we validated this specificity change with a yeast two-hybrid (Y2H) assay. In addition, we show that position-weighted matrices (PWM) compiled from SPOT assays can be used for binding motif screening in potential binding partners and present cases where motifs are either conserved or lost among homologous SH3 interacting proteins. Finally, by comparing pairwise SH3 sequence identity to binding profile correlation we show that for ~75% of all analyzed families the SH3 specificity profile was remarkably conserved over a large evolutionary distance. Thus, a high sequence identity within an SH3 domain family predicts conserved binding specificity, whereas divergence in sequence identity often coincided with a change in binding specificity within this family. As such, our results are important for future studies aimed at unraveling complex specificity networks of peptide recognition domains in higher eukaryotes, including mammals.


Subject(s)
Evolution, Molecular , Fungal Proteins/chemistry , Yeasts/metabolism , Amino Acid Sequence , Binding Sites , Candida albicans/metabolism , Fungal Proteins/metabolism , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/metabolism , Sequence Alignment , Two-Hybrid System Techniques , src Homology Domains
7.
Mol Biol Cell ; 26(15): 2801-9, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26063733

ABSTRACT

Correct protein folding is fundamental for maintaining protein homeostasis and avoiding the formation of potentially cytotoxic protein aggregates. Although some proteins appear to fold unaided, actin requires assistance from the oligomeric molecular chaperone CCT. Here we report an additional connection between CCT and actin by identifying one of the CCT subunits, CCTε, as a component of the myocardin-related cotranscription factor-A (MRTF-A)/serum response factor (SRF) pathway. The SRF pathway registers changes in G-actin levels, leading to the transcriptional up-regulation of a large number of genes after actin polymerization. These genes encode numerous actin-binding proteins as well as actin. We show that depletion of the CCTε subunit by siRNA enhances SRF signaling in cultured mammalian cells by an actin assembly-independent mechanism. Overexpression of CCTε in its monomeric form revealed that CCTε binds via its substrate-binding domain to the C-terminal region of MRTF-A and that CCTε is able to alter the nuclear accumulation of MRTF-A after stimulation by serum addition. Given that the levels of monomeric CCTε conversely reflect the levels of CCT oligomer, our results suggest that CCTε provides a connection between the actin-folding capacity of the cell and actin expression.


Subject(s)
Actins/metabolism , Chaperonin Containing TCP-1/metabolism , Serum Response Factor/metabolism , Animals , BALB 3T3 Cells , Cell Culture Techniques , Cell Line, Tumor , Chaperonin Containing TCP-1/genetics , Humans , Mice , Microfilament Proteins/metabolism , Molecular Chaperones/metabolism , Protein Folding , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Trans-Activators/metabolism
8.
PLoS One ; 8(4): e61147, 2013.
Article in English | MEDLINE | ID: mdl-23577202

ABSTRACT

The spatial and temporal regulation of actin polymerization is crucial for various cellular processes. Members of the Wiskott-Aldrich syndrome protein (WASP) family activate the Arp2/3-complex leading to actin polymerization. The yeast Saccharomyces cerevisiae contains only one WASP homolog, Las17, that requires additional factors for its regulation. Lsb1 and Lsb2/Pin3 are two yeast homologous proteins bearing an SH3 domain that were identified as Las17-binding proteins. Lsb2/Pin3 that promotes prion induction was suggested to link this prion formation to the actin cytoskeleton. However, the cellular role of Lsb1 and the molecular function of both Lsb1 and Lsb2 remain unknown. In this study, we show that Lsb1 and/or Lsb2 full-length proteins inhibit Las17-mediated actin polymerization in vitro, Lsb2 being a less potent inhibitor of Las17 activity compared to Lsb1. Addition of Lsb1 or Lsb2 to the corresponding full-length Lsb1/2 further inhibits Las17 activity. Lsb1 and Lsb2 form homo- and hetero-oligomeric complexes suggesting that these two proteins could regulate Las17 activity via dimerization or cooperative binding. In vivo, overexpressed Lsb1 and Lsb2 proteins cluster Las17-CFP in few cytoplasmic punctate structures that are also positive for other Arp2/3-dependent actin polymerization effectors like Sla1 or Abp1. But, only Lsb1 overexpression blocks the internalization step of receptor-mediated endocytosis. This shows a specific function of Lsb1 in endocytosis.


Subject(s)
Actins/chemistry , Carrier Proteins/metabolism , Endocytosis , Protein Multimerization , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Wiskott-Aldrich Syndrome Protein/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Amino Acid Transport Systems, Basic/metabolism , Carrier Proteins/chemistry , Protein Structure, Quaternary , Protein Transport , Saccharomyces cerevisiae Proteins/chemistry
9.
Eur J Cell Biol ; 90(12): 1016-28, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22000681

ABSTRACT

Yeast Rsp5 ubiquitin ligase is involved in several cellular processes, including endocytosis. Actin patches are sites of endocytosis, a process involving actin assembly and disassembly. Here we show Rsp5 localization in cortical patches and demonstrate its involvement in actin cytoskeleton organization and dynamics. We found that the Rsp5-F1-GFP2 N-terminal fragment and full length GFP-Rsp5 were recruited to peripheral patches that temporarily co-localized with Abp1-mCherry, a marker of actin patches. Actin cytoskeleton organization was defective in a strain lacking RSP5 or overexpressing RSP5, and this phenotype was accompanied by morphological abnormalities. Overexpression of RSP5 caused hypersensitivity of cells to Latrunculin A, an actin-depolymerizing drug and was toxic to cells lacking Las17, an activator of actin nucleation. Moreover, Rsp5 was required for efficient actin polymerization in a whole cell extract based in vitro system. Rsp5 interacted with Las17 and Las17-binding proteins, Lsb1 and Lsb2, in a GST-Rsp5-WW2/3 pull down assay. Rsp5 ubiquitinated Lsb1-HA and Lsb2-HA without directing them for degradation. Overexpression of RSP5 increased the cellular level of HA-Las17 in wild type and in lsb1Δ lsb2Δ strains in which the basal level of Las17 was already elevated. This increase was prevented in a strain devoid of Las17-binding protein Sla1 which is also a target of Rsp5 ubiquitination. Thus, Rsp5 together with Lsb1, Lsb2 and Sla1 regulate the level of Las17, an important activator of actin polymerization.


Subject(s)
Actin Cytoskeleton/metabolism , Cytoskeleton/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitin-Protein Ligase Complexes/metabolism , Actin Cytoskeleton/genetics , Cytoskeleton/enzymology , Endosomal Sorting Complexes Required for Transport/genetics , Gene Expression Regulation, Fungal , Humans , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Protein Ligase Complexes/genetics , Wiskott-Aldrich Syndrome Protein/genetics , Wiskott-Aldrich Syndrome Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...