Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(2): 1113-1118, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31879347

ABSTRACT

Genetic and phenotypic heterogeneity and the lack of sufficiently large patient cohorts pose a significant challenge to understanding genetic associations in rare disease. Here we identify Bsnd (alias Barttin) as a genetic modifier of cystic kidney disease in Joubert syndrome, using a Cep290-deficient mouse model to recapitulate the phenotypic variability observed in patients by mixing genetic backgrounds in a controlled manner and performing genome-wide analysis of these mice. Experimental down-regulation of Bsnd in the parental mouse strain phenocopied the severe cystic kidney phenotype. A common polymorphism within human BSND significantly associates with kidney disease severity in a patient cohort with CEP290 mutations. The striking phenotypic modifications we describe are a timely reminder of the value of mouse models and highlight the significant contribution of genetic background. Furthermore, if appropriately managed, this can be exploited as a powerful tool to elucidate mechanisms underlying human disease heterogeneity.


Subject(s)
Abnormalities, Multiple/genetics , Cerebellum/abnormalities , Chloride Channels/genetics , Chloride Channels/metabolism , Eye Abnormalities/genetics , Genes, Modifier , Kidney Diseases, Cystic/genetics , Retina/abnormalities , Animals , Antigens, Neoplasm/genetics , Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Disease Models, Animal , Genetic Predisposition to Disease/genetics , Kidney Diseases , Mice , Mice, Inbred C57BL , Mutation , Phenotype , Polymorphism, Single Nucleotide , Severity of Illness Index
2.
Microbiologyopen ; 8(7): e00774, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30628184

ABSTRACT

Burkholderia cenocepacia is an opportunistic bacterial pathogen that poses a significant threat to individuals with cystic fibrosis by provoking a strong inflammatory response within the lung. It possesses a type VI secretion system (T6SS), a secretory apparatus that can perforate the cellular membrane of other bacterial species and/or eukaryotic targets, to deliver an arsenal of effector proteins. The B. cenocepacia T6SS (T6SS-1) has been shown to be implicated in virulence in rats and contributes toward actin rearrangements and inflammasome activation in B. cenocepacia-infected macrophages. Here, we present bioinformatics evidence to suggest that T6SS-1 is the archetype T6SS in the Burkholderia genus. We show that B. cenocepacia T6SS-1 is active under normal laboratory growth conditions and displays antibacterial activity against other Gram-negative bacterial species. Moreover, B. cenocepacia T6SS-1 is not required for virulence in three eukaryotic infection models. Bioinformatics analysis identified several candidate T6SS-dependent effectors that may play a role in the antibacterial activity of B. cenocepacia T6SS-1. We conclude that B. cenocepacia T6SS-1 plays an important role in bacterial competition for this organism, and probably in all Burkholderia species that possess this system, thereby broadening the range of species that utilize the T6SS for this purpose.

3.
Nat Commun ; 9(1): 4765, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30420757

ABSTRACT

The type VI secretion system (T6SS) is a multi-protein complex that injects bacterial effector proteins into target cells. It is composed of a cell membrane complex anchored to a contractile bacteriophage tail-like apparatus consisting of a sharpened tube that is ejected by the contraction of a sheath against a baseplate. We present structural and biochemical studies on TssA subunits from two different T6SSs that reveal radically different quaternary structures in comparison to the dodecameric E. coli TssA that arise from differences in their C-terminal sequences. Despite this, the different TssAs retain equivalent interactions with other components of the complex and position their highly conserved N-terminal ImpA_N domain at the same radius from the centre of the sheath as a result of their distinct domain architectures, which includes additional spacer domains and highly mobile interdomain linkers. Together, these variations allow these distinct TssAs to perform a similar function in the complex.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Secretion Systems , Protein Subunits/chemistry , Protein Subunits/metabolism , Amino Acid Sequence , Bacterial Proteins/ultrastructure , Computational Biology , Phylogeny , Protein Domains , Proteolysis , Structure-Activity Relationship
4.
Plasmid ; 89: 49-56, 2017 01.
Article in English | MEDLINE | ID: mdl-27825973

ABSTRACT

To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis.


Subject(s)
Burkholderia/genetics , DNA, Bacterial , Mutation , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Burkholderia/drug effects , Drug Resistance, Bacterial , Gene Order , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...