Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 May 31.
Article in English | MEDLINE | ID: mdl-38819436

ABSTRACT

The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.


Subject(s)
Neurons , Zebrafish , Animals , Neurons/physiology , Neurons/metabolism , Relaxin/metabolism , Relaxin/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , CRISPR-Cas Systems , Rhombencephalon/physiology , Rhombencephalon/metabolism
2.
Biol Open ; 7(3)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29530929

ABSTRACT

Transcriptional control of oxytocinergic cell development influences social, sexual, and appetite related behaviors and is implicated in disorders such as autism and Prader-Willi syndrome. Mediator 12 (Med12) is a transcriptional coactivator required for multiple facets of brain development including subsets of serotonergic and dopaminergic neurons. We surveyed hormone gene expression within the hypothalamo-pituitary axis of med12 mutant zebrafish embryos with a focus on oxytocin (oxt) expression. Some transcripts, such as oxt, vasopressin (avp) and corticotrophin releasing hormone (crh) are undetectable in the med12 mutant, while others are upregulated or downregulated to varying degrees. In med12 mutants, the expression patterns of upstream transcriptional regulators of oxytocinergic cell development remain largely intact in the pre-optic area, suggesting a more direct influence of Med12 on oxt expression. We show that Med12 is required for Wnt signaling in zebrafish. However, oxt expression is unaffected in Wnt-inhibited embryos indicating independence of Wnt signaling. In fact, overactive Wnt signaling inhibits oxt expression, and we identify a Wnt-sensitive period starting at 24 h post fertilization (hpf). Thus, Med12 and repression of Wnt signaling display critical but unrelated roles in regulating oxt expression.

3.
Diseases ; 4(1)2016 03.
Article in English | MEDLINE | ID: mdl-27857842

ABSTRACT

Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...