Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 191: 107979, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040070

ABSTRACT

The desert vipers of the genus Cerastes are a small clade of medically important venomous snakes within the family Viperidae. According to published morphological and molecular studies, the group is comprised by four species: two morphologically similar and phylogenetically sister taxa, the African horned viper (Cerastes cerastes) and the Arabian horned viper (Cerastes gasperettii); a more distantly related species, the Saharan sand viper (Cerastes vipera), and the enigmatic Böhme's sand viper (Cerastes boehmei), only known from a single specimen in captivity allegedly captured in Central Tunisia. In this study, we sequenced one mitochondrial marker (COI) as well as genome-wide data (ddRAD sequencing) from 28 and 41 samples, respectively, covering the entire distribution range of the genus to explore the population genomics, phylogenomic relationships and introgression patterns within the genus Cerastes. Additionally, and to provide insights into the mode of diversification of the group, we carried out niche overlap analyses considering climatic and habitat variables. Both nuclear phylogenomic reconstructions and population structure analyses have unveiled an unexpected evolutionary history for the genus Cerastes, which sharply contradicts the morphological similarities and previously published mitochondrial approaches. Cerastes cerastes and C. vipera are recovered as sister taxa whilst C. gasperettii is a sister taxon to the clade formed by these two species. We found a relatively high niche overlap (OI > 0.7) in both climatic and habitat variables between C. cerastes and C. vipera, contradicting a potential scenario of sympatric speciation. These results are in line with the introgression found between the northwestern African populations of C. cerastes and C. vipera. Finally, our genomic data confirms the existence of a lineage of C. cerastes in Arabia. All these results highlight the importance of genome-wide data over few genetic markers to study the evolutionary history of species.


Subject(s)
Cerastes , Viperidae , Animals , Phylogeny , Viperidae/genetics , Tunisia , Vipera
3.
Mol Phylogenet Evol ; 138: 193-204, 2019 09.
Article in English | MEDLINE | ID: mdl-31129348

ABSTRACT

The evolutionary history of taxa with limited overseas dispersal abilities is considered to be majorly influenced by vicariant events constituting them as model organisms for the interpretation of evolutionary processes. An excellent candidate are the wall lizards of the genus Podarcis exhibiting an impressive level of genetic and morphological diversification and harboring several cases of recently discovered cryptic diversity. In this study, we investigated the effect of palaeogeographic events on the wall lizards' biodiversity patterns in the Aegean (Greece) as well as the evolutionary processes that acted both in space and time. To accomplish that we studied a group of three endemic Podarcis species (i.e., P. cretensis, P. levendis, and P. peloponnesiacus) both at the intra and interspecific levels employing mitochondrial and nuclear DNA sequence data as well as microsatellites. Furthermore, presence information coupled with bioclimatic data (i.e., species distribution modeling, and niche similarity analyses) shed light on the necessary ecological factors for the species' occurrence. These approaches revealed yet another case of cryptic diversity for this group of lizards, with the existence of two slightly overlapping lineages within P. peloponnesiacus and highly structured populations within P. cretensis. Species diversification occurred during the Pliocene with P. peloponnesiacus divergence into the two lineages dating back to 1.86 Mya. Furthermore, temperature and precipitation related environmental parameters were the most important ones regarding the current distribution of the studied species. Based on the results, we propose a more detailed phylogeographic scenario where both the paleogeography of the area and several environmental parameters have shaped the genetic diversity and the current distribution pattern of this species group.


Subject(s)
Lizards/classification , Phylogeny , Phylogeography , Animals , Balkan Peninsula , Biodiversity , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Greece , Lizards/genetics , Microsatellite Repeats/genetics , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...