Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38668767

ABSTRACT

The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.


Subject(s)
Microtubules , Multivesicular Bodies , Septins , Animals , Dogs , Madin Darby Canine Kidney Cells , Microtubules/chemistry , Microtubules/metabolism , Multivesicular Bodies/chemistry , Multivesicular Bodies/metabolism , Septins/chemistry , Septins/metabolism , Tetraspanin 30/metabolism , Cytoskeleton/chemistry , Cytoskeleton/metabolism , Endocytosis
2.
Methods Mol Biol ; 2794: 79-94, 2024.
Article in English | MEDLINE | ID: mdl-38630222

ABSTRACT

Reconstitution of intracellular transport in cell-free in vitro assays enables the understanding and dissection of the molecular mechanisms that underlie membrane traffic. Using total internal reflection fluorescence (TIRF) microscopy and microtubules, which are immobilized to a functionalized glass surface, the kinetic properties of single kinesin molecules can be imaged and analyzed in the presence or absence of microtubule-associated proteins. Here, we describe methods for the in vitro reconstitution of the motility of the neuronal kinesin motor KIF1A on microtubules associated with heteromeric septin (SEPT2/6/7) complexes. This method can be adapted for various neuronal septin complexes and kinesin motors, leading to new insights into the spatial regulation of neuronal membrane traffic by microtubule-associated septins.


Subject(s)
Kinesins , Septins , Microtubules , Cytoskeleton , Microtubule-Associated Proteins
3.
bioRxiv ; 2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37398172

ABSTRACT

Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known. Here, we report that the oncogenic septin 9 isoform 1 (SEPT9_i1) is a component of breast cancer invadopodia. SEPT9_i1 depletion diminishes invadopodia formation and the clustering of invadopodia precursor components TKS5 and cortactin. This phenotype is characterized by deformed nuclei, and nuclear envelopes with folds and grooves. We show that SEPT9_i1 localizes to the nuclear envelope and juxtanuclear invadopodia. Moreover, exogenous lamin A rescues nuclear morphology and juxtanuclear TKS5 clusters. Importantly, SEPT9_i1 is required for the amplification of juxtanuclear invadopodia, which is induced by the epidermal growth factor. We posit that nuclei of low deformability favor the formation of juxtanuclear invadopodia in a SEPT9_i1-dependent manner, which functions as a tunable mechanism for overcoming ECM impenetrability. Highlights: The oncogenic SEPT9_i1 is enriched in breast cancer invadopodia in 2D and 3D ECMSEPT9_i1 promotes invadopodia precursor clustering and invadopodia elongationSEPT9_i1 localizes to the nuclear envelope and reduces nuclear deformabilitySEPT9_i1 is required for EGF-induced amplification of juxtanuclear invadopodia. eTOC Blurb: Invadopodia promote the invasion of metastatic cancers. The nucleus is a mechanosensory organelle that determines migratory strategies, but how it crosstalks with invadopodia is unknown. Okletey et al show that the oncogenic isoform SEPT9_i1 promotes nuclear envelope stability and the formation of invadopodia at juxtanuclear areas of the plasma membrane.

4.
Cell Rep ; 42(8): 112893, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37516960

ABSTRACT

Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known. Here, we report that the oncogenic septin 9 isoform 1 (SEPT9_i1) is a component of breast cancer invadopodia. SEPT9_i1 depletion diminishes invadopodium formation and the clustering of the invadopodium precursor components TKS5 and cortactin. This phenotype is characterized by deformed nuclei and nuclear envelopes with folds and grooves. We show that SEPT9_i1 localizes to the nuclear envelope and juxtanuclear invadopodia. Moreover, exogenous lamin A rescues nuclear morphology and juxtanuclear TKS5 clusters. Importantly, SEPT9_i1 is required for the amplification of juxtanuclear invadopodia, which is induced by the epidermal growth factor. We posit that nuclei of low deformability favor the formation of juxtanuclear invadopodia in a SEPT9_i1-dependent manner, which functions as a tunable mechanism for overcoming ECM impenetrability.


Subject(s)
Breast Neoplasms , Podosomes , Humans , Female , Septins/metabolism , Podosomes/metabolism , Protein Isoforms/metabolism , Breast Neoplasms/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Cell Line, Tumor , Neoplasm Invasiveness
5.
J Biol Chem ; 299(9): 105084, 2023 09.
Article in English | MEDLINE | ID: mdl-37495111

ABSTRACT

Long-range membrane traffic is guided by microtubule-associated proteins and posttranslational modifications, which collectively comprise a traffic code. The regulatory principles of this code and how it orchestrates the motility of kinesin and dynein motors are largely unknown. Septins are a large family of GTP-binding proteins, which assemble into complexes that associate with microtubules. Using single-molecule in vitro motility assays, we tested how the microtubule-associated SEPT2/6/7, SEPT2/6/7/9, and SEPT5/7/11 complexes affect the motilities of the constitutively active kinesins KIF5C and KIF1A and the dynein-dynactin-bicaudal D (DDB) motor complex. We found that microtubule-associated SEPT2/6/7 is a potent inhibitor of DDB and KIF5C, preventing mainly their association with microtubules. SEPT2/6/7 also inhibits KIF1A by obstructing stepping along microtubules. On SEPT2/6/7/9-coated microtubules, KIF1A inhibition is dampened by SEPT9, which alone enhances KIF1A, showing that individual septin subunits determine the regulatory properties of septin complexes. Strikingly, SEPT5/7/11 differs from SEPT2/6/7, in permitting the motility of KIF1A and immobilizing DDB to the microtubule lattice. In hippocampal neurons, filamentous SEPT5 colocalizes with somatodendritic microtubules that underlie Golgi membranes and lack SEPT6. Depletion of SEPT5 disrupts Golgi morphology and polarization of Golgi ribbons into the shaft of somato-proximal dendrites, which is consistent with the tethering of DDB to microtubules by SEPT5/7/11. Collectively, these results suggest that microtubule-associated complexes have differential specificities in the regulation of the motility and positioning of microtubule motors. We posit that septins are an integral part of the microtubule-based code that spatially controls membrane traffic.


Subject(s)
Dyneins , Kinesins , Microtubule-Associated Proteins , Septins , Dyneins/metabolism , Kinesins/metabolism , Microtubule-Associated Proteins/metabolism , Septins/metabolism , COS Cells , HEK293 Cells , Humans , Animals , Chlorocebus aethiops , Protein Transport
6.
Curr Biol ; 33(3): 434-448.e8, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36538929

ABSTRACT

Pyramidal neurons are a major cell type of the forebrain, consisting of a pyramidally shaped soma with axonal and apicobasal dendritic processes. It is poorly understood how the neuronal soma develops its pyramidal morphology, while generating neurites of the proper shape and orientation. Here, we discovered that the spherical somata of immature neurite-less neurons possess a circumferential wreath-like network of septin filaments, which promotes neuritogenesis by balancing the protrusive activity of lamellipodia and filopodia. In embryonic rat hippocampal and mouse cortical neurons, the septin wreath network consists of curvilinear filaments that contain septins 5, 7, and 11 (Sept5/7/11). The Sept5/7/11 wreath network demarcates a zone of myosin II enrichment and Arp2/3 diminution at the base of filopodial actin bundles. In Sept7-depleted neurons, cell bodies are enlarged with hyperextended lamellae and abnormally shaped neurites that originate from lamellipodia. This phenotype is accompanied by diminished myosin II and filopodia lifetimes and increased Arp2/3 and lamellipodial activity. Inhibition of Arp2/3 rescues soma and neurite phenotypes, indicating that the septin wreath network suppresses the extension of lamellipodia, facilitating the formation of neurites from the filopodia of a consolidated soma. We show that this septin function is critical for developing a pyramidally shaped soma with properly distributed and oriented dendrites in cultured rat hippocampal neurons and in vivo in mouse perinatal cortical neurons. Therefore, the somatic septin cytoskeleton provides a key morphogenetic mechanism for neuritogenesis and the development of pyramidal neurons.


Subject(s)
Neurites , Septins , Mice , Rats , Animals , Neurites/physiology , Septins/metabolism , Pseudopodia/metabolism , Pyramidal Cells/metabolism , Morphogenesis , Myosin Type II/metabolism , Cells, Cultured
7.
Proc Natl Acad Sci U S A ; 119(50): e2202803119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36475946

ABSTRACT

Cellular morphogenesis and processes such as cell division and migration require the coordination of the microtubule and actin cytoskeletons. Microtubule-actin crosstalk is poorly understood and largely regarded as the capture and regulation of microtubules by actin. Septins are filamentous guanosine-5'-triphosphate (GTP) binding proteins, which comprise the fourth component of the cytoskeleton along microtubules, actin, and intermediate filaments. Here, we report that septins mediate microtubule-actin crosstalk by coupling actin polymerization to microtubule lattices. Superresolution and platinum replica electron microscopy (PREM) show that septins localize to overlapping microtubules and actin filaments in the growth cones of neurons and non-neuronal cells. We demonstrate that recombinant septin complexes directly crosslink microtubules and actin filaments into hybrid bundles. In vitro reconstitution assays reveal that microtubule-bound septins capture and align stable actin filaments with microtubules. Strikingly, septins enable the capture and polymerization of growing actin filaments on microtubule lattices. In neuronal growth cones, septins are required for the maintenance of the peripheral actin network that fans out from microtubules. These findings show that septins directly mediate microtubule interactions with actin filaments, and reveal a mechanism of microtubule-templated actin growth with broader significance for the self-organization of the cytoskeleton and cellular morphogenesis.


Subject(s)
Actins , Septins , Microtubules
8.
Curr Opin Neurobiol ; 75: 102557, 2022 08.
Article in English | MEDLINE | ID: mdl-35609489

ABSTRACT

Neuronal morphogenesis is guided by outside-in signals and inside-out mechanisms, which require spatiotemporal precision. How the intracellular mechanisms of neuronal morphogenesis are spatiotemporally controlled is not well understood. Septins comprise a unique GTPase module, which consists of complexes with differential localizations and functions. Septins demarcate distinct membrane domains in neural precursor cells, orienting the axis of cell division and the sites of neurite formation. By controlling the localization of membrane and cytoskeletal proteins, septins promote axon-dendrite formation and polarity. Furthermore, septins modulate vesicle exocytosis at pre-synaptic terminals, and stabilize dendritic spines and post-synaptic densities in a phospho-regulatable manner. We posit that neuronal septins are topologically and functionally specialized for the spatiotemporal regulation of neuronal morphogenesis and plasticity.


Subject(s)
Neural Stem Cells , Septins , Morphogenesis , Neural Stem Cells/metabolism , Neurogenesis , Neurons/metabolism , Septins/metabolism
9.
Mol Biol Cell ; 33(5): ar40, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35274967

ABSTRACT

Endothelial cell migration is critical for vascular angiogenesis and is compromised to facilitate tumor metastasis. The migratory process requires the coordinated assembly and disassembly of focal adhesions (FA), actin, and microtubules (MT). MT dynamics at FAs deliver vesicular cargoes and enhance actomyosin contractility to promote FA turnover and facilitate cell advance. Noncentrosomal (NC) MTs regulate FA dynamics and are sufficient to drive cell polarity, but how NC MTs target FAs to control FA turnover is not understood. Here, we show that Rac1 induces the assembly of FA-proximal septin filaments that promote NC MT growth into FAs and inhibit mitotic centromere-associated kinesin (MCAK)-associated MT disassembly, thereby maintaining intact MT plus ends proximal to FAs. Septin-associated MT rescue is coupled with accumulation of Aurora-A kinase and cytoplasmic linker-associated protein (CLASP) localization to the MT between septin and FAs. In this way, NC MTs are strategically positioned to undergo MCAK- and CLASP-regulated bouts of assembly and disassembly into FAs, thereby regulating FA turnover and cell migration.


Subject(s)
Focal Adhesions , Septins , Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Movement/physiology , Focal Adhesions/metabolism , Microtubules/metabolism , Septins/metabolism
10.
Proteomics ; 21(19): e2100155, 2021 10.
Article in English | MEDLINE | ID: mdl-34409731

ABSTRACT

Septins are a family of multimeric GTP-binding proteins, which are abnormally expressed in cancer. Septin 9 (SEPT9) is an essential and ubiquitously expressed septin with multiple isoforms, which have differential expression patterns and effects in breast cancer cells. It is unknown, however, if SEPT9 isoforms associate with different molecular networks and functions. Here, we performed a proteomic screen in MCF-7 breast cancer cells to identify the interactome of GFP-SEPT9 isoforms 1, 4 and 5, which vary significantly in their N-terminal extensions. While all three isoforms associated with SEPT2 and SEPT7, the truncated SEPT9_i4 and SEPT9_i5 interacted with septins of the SEPT6 group more promiscuously than SEPT9_i1, which bound predominately SEPT8. Spatial mapping and functional clustering of non-septin partners showed isoform-specific differences in interactions with proteins of distinct subcellular organelles (e.g., nuclei, centrosomes, cilia) and functions such as cell signalling and ubiquitination. The interactome of the full length SEPT9_i1 was more enriched in cytoskeletal regulators, while the truncated SEPT9_i4 and SEPT9_i5 exhibited preferential and isoform-specific interactions with nuclear, signalling, and ubiquitinating proteins. These data provide evidence for isoform-specific interactions, which arise from truncations in the N-terminal extensions of SEPT9, and point to novel roles in the pathogenesis of breast cancer.


Subject(s)
Breast Neoplasms , Septins , Female , Gene Expression Profiling , Humans , MCF-7 Cells , Protein Isoforms/genetics , Proteomics , Septins/genetics , Septins/metabolism
11.
Trends Cell Biol ; 31(12): 979-993, 2021 12.
Article in English | MEDLINE | ID: mdl-34253430

ABSTRACT

The intracellular long-range transport of membrane vesicles and organelles is mediated by microtubule motors (kinesins, dynein) which move cargo with spatiotemporal accuracy and efficiency. How motors navigate the microtubule network and coordinate their activity on membrane cargo are fundamental but poorly understood questions. New studies show that microtubule-dependent membrane traffic is spatially controlled by septins - a unique family of multimerizing GTPases that associate with microtubules and membrane organelles. We review how septins selectively regulate motor interactions with microtubules and membrane cargo. We posit that septins provide a novel traffic code that specifies the movement and directionality of select motor-cargo complexes on distinct microtubule tracks.


Subject(s)
Microtubules , Septins , Biological Transport , Dyneins/metabolism , Humans , Kinesins , Microtubules/metabolism , Protein Transport , Septins/metabolism
12.
Curr Biol ; 31(10): R651-R666, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34033796

ABSTRACT

Septins are an integral component of the cytoskeleton, assembling into higher-order oligomers and filamentous polymers that associate with actin filaments, microtubules and membranes. Here, we review septin interactions with actin and microtubules, and septin-mediated regulation of the organization and dynamics of these cytoskeletal networks, which is critical for cellular morphogenesis. We discuss how actomyosin-associated septins function in cytokinesis, cell migration and host defense against pathogens. We highlight newly emerged roles of septins at the interface of microtubules and membranes with molecular motors, which point to a 'septin code' for the regulation of membrane traffic. Additionally, we revisit the functions of microtubule-associated septins in mitosis and meiosis. In sum, septins comprise a unique module of cytoskeletal regulators that are spatially and functionally specialized and have properties of bona fide actin-binding and microtubule-associated proteins. With many questions still outstanding, the study of septins will continue to provide new insights into fundamental problems of cytoskeletal organization and function.


Subject(s)
Actins , Microtubules , Septins , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Humans , Microtubules/metabolism , Septins/metabolism
13.
J Cell Biol ; 220(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33416861

ABSTRACT

The metabolic and signaling functions of lysosomes depend on their intracellular positioning and trafficking, but the underlying mechanisms are little understood. Here, we have discovered a novel septin GTPase-based mechanism for retrograde lysosome transport. We found that septin 9 (SEPT9) associates with lysosomes, promoting the perinuclear localization of lysosomes in a Rab7-independent manner. SEPT9 targeting to mitochondria and peroxisomes is sufficient to recruit dynein and cause perinuclear clustering. We show that SEPT9 interacts with both dynein and dynactin through its GTPase domain and N-terminal extension, respectively. Strikingly, SEPT9 associates preferentially with the dynein intermediate chain (DIC) in its GDP-bound state, which favors dimerization and assembly into septin multimers. In response to oxidative cell stress induced by arsenite, SEPT9 localization to lysosomes is enhanced, promoting the perinuclear clustering of lysosomes. We posit that septins function as GDP-activated scaffolds for the cooperative assembly of dynein-dynactin, providing an alternative mechanism of retrograde lysosome transport at steady state and during cellular adaptation to stress.


Subject(s)
Dynactin Complex/metabolism , Dyneins/metabolism , Septins/metabolism , Animals , COS Cells , Chlorocebus aethiops , Endosomes/metabolism , Guanosine Diphosphate/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Neurons/metabolism , Oxidative Stress , Protein Binding , Protein Domains , Protein Transport , Rats , Septins/chemistry , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
14.
Cytoskeleton (Hoboken) ; 77(11): 485-499, 2020 11.
Article in English | MEDLINE | ID: mdl-33185030

ABSTRACT

The septins are filament-forming proteins found in diverse eukaryotes from fungi to vertebrates, with roles in cytokinesis, shaping of membranes and modifying cytoskeletal organization. These GTPases assemble into rod-shaped soluble hetero-hexamers and hetero-octamers in mammals, which polymerize into filaments and higher order structures. While the cell biology and pathobiology of septins are advancing rapidly, mechanistic study of the mammalian septins is limited by a lack of recombinant hetero-octamer materials. We describe here the production and characterization of a recombinant mammalian septin hetero-octamer of defined stoichiometry, the SEPT2/SEPT6/SEPT7/SEPT3 complex. Using a fluorescent protein fusion to the complex, we observed filaments assembled from this complex. In addition, we used this novel tool to resolve recent questions regarding the organization of the soluble septin complex. Biochemical characterization of a SEPT3 truncation that disrupts SEPT3-SEPT3 interactions is consistent with SEPT3 occupying a central position in the complex while the SEPT2 subunits are at the ends of the rod-shaped octameric complexes. Consistent with SEPT2 being on the complex ends, we find that our purified SEPT2/SEPT6/SEPT7/SEPT3 hetero-octamer copolymerizes into mixed filaments with separately purified SEPT2/SEPT6/SEPT7 hetero-hexamer. We expect this new recombinant production approach to lay essential groundwork for future studies into mammalian septin mechanism and function.


Subject(s)
Septins/metabolism , Animals , Mammals , Protein Multimerization
15.
Mol Biol Cell ; 31(21): 2289-2297, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32991244

ABSTRACT

Septins are a unique family of GTPases, which were discovered 50 years ago as essential genes for the asymmetric cell shape and division of budding yeast. Septins assemble into filamentous nonpolar polymers, which associate with distinct membrane macrodomains and subpopulations of actin filaments and microtubules. While structurally a cytoskeleton-like element, septins function predominantly as spatial regulators of protein localization and interactions. Septin scaffolds and barriers have provided a long-standing paradigm for the generation and maintenance of asymmetry in cell membranes. Septins also promote asymmetry by regulating the spatial organization of the actin and microtubule cytoskeleton, and biasing the directionality of membrane traffic. In this 50th anniversary perspective, we highlight how septins have conserved and adapted their roles as effectors of membrane and cytoplasmic asymmetry across fungi and animals. We conclude by outlining principles of septin function as a module of symmetry breaking, which alongside the monomeric small GTPases provides a core mechanism for the biogenesis of molecular asymmetry and cell polarity.


Subject(s)
Septins/metabolism , Actin Cytoskeleton , Animals , Cell Membrane/enzymology , Cell Membrane/metabolism , Cell Shape , Cytoskeleton , Eukaryota/enzymology , Humans , Microtubules , Septins/physiology
16.
Mol Cell Neurosci ; 105: 103492, 2020 06.
Article in English | MEDLINE | ID: mdl-32294508

ABSTRACT

Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.


Subject(s)
Cytoskeleton/metabolism , Microtubules/metabolism , Neurons/cytology , Protein Transport/physiology , Animals , Dendrites/metabolism , Golgi Apparatus/metabolism , Humans
17.
Mol Biol Cell ; 30(23): 2913-2928, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31577529

ABSTRACT

Septins (SEPTs) are filamentous guanosine-5'-triphosphate (GTP)-binding proteins, which affect microtubule (MT)-dependent functions including membrane trafficking and cell division, but their precise role in MT dynamics is poorly understood. Here, in vitro reconstitution of MT dynamics with SEPT2/6/7, the minimal subunits of septin heteromers, shows that SEPT2/6/7 has a biphasic concentration-dependent effect on MT growth. Lower concentrations of SEPT2/6/7 enhance MT plus-end growth and elongation, while higher and intermediate concentrations inhibit and pause plus-end growth, respectively. We show that SEPT2/6/7 has a modest preference for GTP- over guanosine diphosphate (GDP)-bound MT lattice and competes with end-binding protein 1 (EB1) for binding to guanosine 5'-O-[γ-thio]triphosphate (GTPγS)-stabilized MTs, which mimic the EB1-preferred GDP-Pi state of polymerized tubulin. Strikingly, SEPT2/6/7 triggers EB1 dissociation from plus-end tips in cis by binding to the MT lattice and in trans when MT plus ends collide with SEPT2/6/7 filaments. At these intersections, SEPT2/6/7 filaments were more potent barriers than actin filaments in pausing MT growth and dissociating EB1 in vitro and in live cells. These data demonstrate that SEPT2/6/7 complexes and filaments can directly impact MT plus-end growth and the tracking of plus end-binding proteins and thereby may facilitate the capture of MT plus ends at intracellular sites of septin enrichment.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Multiprotein Complexes/metabolism , Septins/metabolism , Animals , Humans , Models, Biological , Protein Binding , Rats, Sprague-Dawley
18.
Curr Biol ; 29(13): 2174-2182.e7, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31204162

ABSTRACT

Abscission is the terminal step of mitosis that physically separates two daughter cells [1, 2]. Abscission requires the endocytic sorting complex required for transport (ESCRT), a molecular machinery of multiple subcomplexes (ESCRT-I/II/III) that promotes membrane remodeling and scission [3-5]. Recruitment of ESCRT-I/II complexes to the midbody of telophase cells initiates ESCRT-III assembly into two rings, which subsequently expand into helices and spirals that narrow down to the incipient site of abscission [6-8]. ESCRT-III assembly is highly dynamic and spatiotemporally ordered, but the underlying mechanisms are poorly understood. Here, we report that, after cleavage furrow closure, septins form a membrane-bound double ring that controls the organization and function of ESCRT-III. The septin double ring demarcates the sites of ESCRT-III assembly into rings and disassembles before ESCRT-III rings expand into helices and spirals. We show that septin 9 (SEPT9) depletion, which abrogates abscission, impairs recruitment of VPS25 (ESCRT-II) and CHMP6 (ESCRT-III). Strikingly, ESCRT-III subunits (CHMP4B and CHMP2A/B) accumulate to the midbody, but they are highly disorganized, failing to form symmetric rings and to expand laterally into the cone-shaped helices and spirals of abscission. We found that SEPT9 interacts directly with the ubiquitin E2 variant (UEV) domain of ESCRT-I protein TSG101 through two N-terminal PTAP motifs, which are required for the recruitment of VPS25 and CHMP6, and the spatial organization of ESCRT-III (CHMP4B and CHMP2B) into functional rings. These results reveal that septins function in the ESCRT-I-ESCRT-II-CHMP6 pathway of ESCRT-III assembly and provide a framework for the spatiotemporal control of the ESCRT machinery of cytokinetic abscission.


Subject(s)
Cytokinesis , Endosomal Sorting Complexes Required for Transport/metabolism , Mitosis , Septins/metabolism , Animals , Cytoskeleton/metabolism , Dogs , Madin Darby Canine Kidney Cells
19.
Cytoskeleton (Hoboken) ; 76(1): 83-91, 2019 01.
Article in English | MEDLINE | ID: mdl-30144301

ABSTRACT

Septins are GTP-binding proteins that associate with the microtubule (MT) and actin cytoskeleton. Septins affect MT organization and posttranslational modifications, but their role in MT dynamics is less understood. Here, we reconstituted MT dynamics in the presence of the MT-binding septin (SEPT9) using an in vitro cell-free assay, which images the polymerization of tubulin from guanosine-5'-[(α,ß)-methyleno]triphosphate (GMPCPP)-stabilized MT seeds. We found that submicromolar concentrations of SEPT9 suppress MT catastrophe and enhance the growth of MT plus ends to great lengths, while low micromolar concentrations of SEPT9 stabilize MTs by inhibiting dynamic instability. We show that SEPT9 associates preferentially with the lattice of GMPCPP-stabilized MT seeds and surprisingly recruits soluble tubulin to the MT lattice. Notably, the effects of SEPT9 on MT dynamics are dependent on its G-G dimerization interface, which is formed by the pockets of the GTP-binding domains. A mutation (H530D) that disrupts G-G dimerization abrogates the effects of SEPT9 on MT dynamics and diminishes its ability to recruit tubulin to the MT lattice. Taken together, these results suggest that SEPT9 promotes the formation and maintenance of long stable MTs through a mechanism that may involve recruitment of unpolymerized tubulin to the MT lattice.


Subject(s)
Microtubules/metabolism , Septins/metabolism , Microscopy , Tubulin/metabolism
20.
Cell Host Microbe ; 24(6): 866-874.e4, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30543779

ABSTRACT

The cytoskeleton occupies a central role in cellular immunity by promoting bacterial sensing and antibacterial functions. Septins are cytoskeletal proteins implicated in various cellular processes, including cell division. Septins also assemble into cage-like structures that entrap cytosolic Shigella, yet how septins recognize bacteria is poorly understood. Here, we discover that septins are recruited to regions of micron-scale membrane curvature upon invasion and division by a variety of bacterial species. Cardiolipin, a curvature-specific phospholipid, promotes septin recruitment to highly curved membranes of Shigella, and bacterial mutants lacking cardiolipin exhibit less septin cage entrapment. Chemically inhibiting cell separation to prolong membrane curvature or reducing Shigella cell growth respectively increases and decreases septin cage formation. Once formed, septin cages inhibit Shigella cell division upon recruitment of autophagic and lysosomal machinery. Thus, recognition of dividing bacterial cells by the septin cytoskeleton is a powerful mechanism to restrict the proliferation of intracellular bacterial pathogens.


Subject(s)
Lysosomes/metabolism , Pseudomonas aeruginosa/physiology , Septins/metabolism , Shigella flexneri/physiology , Staphylococcus aureus/physiology , Autophagy , Cardiolipins/genetics , Cardiolipins/metabolism , Cell Division , Cell Proliferation , Cytoskeleton/metabolism , HeLa Cells , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Septins/genetics , Shigella flexneri/genetics , Shigella flexneri/pathogenicity , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...