Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Acta Obstet Gynecol Scand ; 98(9): 1207-1217, 2019 09.
Article in English | MEDLINE | ID: mdl-31081113

ABSTRACT

The second Signal Processing and Monitoring in Labor workshop gathered researchers who utilize promising new research strategies and initiatives to tackle the challenges of intrapartum fetal monitoring. The workshop included a series of lectures and discussions focusing on: new algorithms and techniques for cardiotocogoraphy (CTG) and electrocardiogram acquisition and analyses; the results of a CTG evaluation challenge comparing state-of-the-art computerized methods and visual interpretation for the detection of arterial cord pH <7.05 at birth; the lack of consensus about the role of intrapartum acidemia in the etiology of fetal brain injury; the differences between methods for CTG analysis "mimicking" expert clinicians and those derived from "data-driven" analyses; a critical review of the results from two randomized controlled trials testing the former in clinical practice; and relevant insights from modern physiology-based studies. We concluded that the automated algorithms performed comparably to each other and to clinical assessment of the CTG. However, the sensitivity and specificity urgently need to be improved (both computerized and visual assessment). Data-driven CTG evaluation requires further work with large multicenter datasets based on well-defined labor outcomes. And before first tests in the clinic, there are important lessons to be learnt from clinical trials that tested automated algorithms mimicking expert CTG interpretation. In addition, transabdominal fetal electrocardiogram monitoring provides reliable CTG traces and variability estimates; and fetal electrocardiogram waveform analysis is subject to promising new research. There is a clear need for close collaboration between computing and clinical experts. We believe that progress will be possible with multidisciplinary collaborative research.


Subject(s)
Algorithms , Fetal Monitoring/methods , Acidosis/diagnosis , Cardiotocography/methods , Electrocardiography/methods , Female , Humans , Pregnancy , Prenatal Diagnosis , Signal Processing, Computer-Assisted , United Kingdom
2.
Health Technol (Berl) ; 7(2): 241-254, 2017.
Article in English | MEDLINE | ID: mdl-29201590

ABSTRACT

Cardiotocography (CTG) is a standard tool for the assessment of fetal well-being during pregnancy and delivery. However, its interpretation is associated with high inter- and intra-observer variability. Since its introduction there have been numerous attempts to develop computerized systems assisting the evaluation of the CTG recording. Nevertheless these systems are still hardly used in a delivery ward. Two main approaches to computerized evaluation are encountered in the literature; the first one emulates existing guidelines, while the second one is more of a data-driven approach using signal processing and computational methods. The latter employs preprocessing, feature extraction/selection and a classifier that discriminates between two or more classes/conditions. These classes are often formed using the umbilical cord artery pH value measured after delivery. In this work an approach to Fetal Heart Rate (FHR) classification using pH is presented that could serve as a benchmark for reporting results on the unique open-access CTU-UHB CTG database, the largest and the only freely available database of this kind. The overall results using a very small number of features and a Least Squares Support Vector Machine (LS-SVM) classifier, are in accordance to the ones encountered in the literature and outperform the results of a baseline classification scheme proving the utility of using advanced data processing methods. Therefore the achieved results can be used as a benchmark for future research involving more informative features and/or better classification algorithms.

3.
IEEE J Biomed Health Inform ; 21(3): 664-671, 2017 05.
Article in English | MEDLINE | ID: mdl-27046884

ABSTRACT

Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MADdtrd, baseline level ß0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.


Subject(s)
Heart Rate, Fetal/physiology , Signal Processing, Computer-Assisted , Support Vector Machine , Algorithms , Electrocardiography/methods , Female , Humans , Pregnancy
4.
PLoS One ; 10(8): e0136661, 2015.
Article in English | MEDLINE | ID: mdl-26322889

ABSTRACT

BACKGROUND: The fetal heart rate (FHR) is commonly monitored during labor to detect early fetal acidosis. FHR variability is traditionally investigated using Fourier transform, often with adult predefined frequency band powers and the corresponding LF/HF ratio. However, fetal conditions differ from adults and modify spectrum repartition along frequencies. AIMS: This study questions the arbitrariness definition and relevance of the frequency band splitting procedure, and thus of the calculation of the underlying LF/HF ratio, as efficient tools for characterizing intrapartum FHR variability. STUDY DESIGN: The last 30 minutes before delivery of the intrapartum FHR were analyzed. SUBJECTS: Case-control study. A total of 45 singletons divided into two groups based on umbilical cord arterial pH: the Index group with pH ≤ 7.05 (n = 15) and Control group with pH > 7.05 (n = 30). OUTCOME MEASURES: Frequency band-based LF/HF ratio and Hurst parameter. RESULTS: This study shows that the intrapartum FHR is characterized by fractal temporal dynamics and promotes the Hurst parameter as a potential marker of fetal acidosis. This parameter preserves the intuition of a power frequency balance, while avoiding the frequency band splitting procedure and thus the arbitrary choice of a frequency separating bands. The study also shows that extending the frequency range covered by the adult-based bands to higher and lower frequencies permits the Hurst parameter to achieve better performance for identifying fetal acidosis. CONCLUSIONS: The Hurst parameter provides a robust and versatile tool for quantifying FHR variability, yields better acidosis detection performance compared to the LF/HF ratio, and avoids arbitrariness in spectral band splitting and definitions.


Subject(s)
Acidosis/blood , Asphyxia Neonatorum/diagnosis , Fetal Blood/physiology , Fetal Monitoring , Heart Rate, Fetal/physiology , Case-Control Studies , Female , Fractals , Humans , Infant, Newborn , Labor, Obstetric , Pregnancy
5.
J Eval Clin Pract ; 21(4): 694-702, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26011725

ABSTRACT

RATIONALE, AIMS AND OBJECTIVES: To evaluate obstetricians' inter- and intra-observer agreement on intrapartum cardiotocogram (CTG) recordings and to examine obstetricians' evaluations with respect to umbilical artery pH and base deficit. METHODS: Nine experienced obstetricians annotated 634 intrapartum CTG recordings. The evaluation of each recording was divided into four steps: evaluation of two 30-minute windows in the first stage of labour, evaluation of one window in the second stage of labour and labour outcome prediction. The complete set of evaluations used for this experiment is available online. The inter- and intra-observer agreement was evaluated using proportion of agreement and kappa coefficient. Clinicians' sensitivity and specificity was computed with respect to umbilical artery pH, base deficit and to Apgar score at the fifth minute. RESULTS: The overall proportion of agreement between clinicians reached 48% with 95% confidence intervals (CI) (CI: 47-50). Regarding the different classes, proportion of agreement ranged from 57% (CI: 54-60) for normal to 41% (CI: 36-46) for pathological class. The sensitivity of clinicians' majority vote to objective outcome was 39% (CI: 16-63) for the umbilical artery base deficit and 27% (CI: 16-42) for pH. The specificity was 89% (CI: 86-92) for both types of objective outcome. CONCLUSIONS: The reported inter-/intra-observer variability is large and this holds irrespective of clinicians' experience or work place. The results support the need of modernized guidelines for CTG evaluation and/or objectivization and repeatability by introduction of a computerized approach that could standardize the process of CTG evaluation within the delivery ward.


Subject(s)
Cardiotocography/statistics & numerical data , Clinical Competence , Obstetrics/statistics & numerical data , Humans , Hydrogen-Ion Concentration , Observer Variation , Reproducibility of Results , Sensitivity and Specificity , Software
6.
J Biomed Inform ; 51: 72-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24747355

ABSTRACT

Interpretation of cardiotocogram (CTG) is a difficult task since its evaluation is complicated by a great inter- and intra-individual variability. Previous studies have predominantly analyzed clinicians' agreement on CTG evaluation based on quantitative measures (e.g. kappa coefficient) that do not offer any insight into clinical decision making. In this paper we aim to examine the agreement on evaluation in detail and provide data-driven analysis of clinical evaluation. For this study, nine obstetricians provided clinical evaluation of 634 CTG recordings (each ca. 60min long). We studied the agreement on evaluation and its dependence on the increasing number of clinicians involved in the final decision. We showed that despite of large number of clinicians the agreement on CTG evaluations is difficult to reach. The main reason is inherent inter- and intra-observer variability of CTG evaluation. Latent class model provides better and more natural way to aggregate the CTG evaluation than the majority voting especially for larger number of clinicians. Significant improvement was reached in particular for the pathological evaluation - giving a new insight into the process of CTG evaluation. Further, the analysis of latent class model revealed that clinicians unconsciously use four classes when evaluating CTG recordings, despite the fact that the clinical evaluation was based on FIGO guidelines where three classes are defined.


Subject(s)
Artificial Intelligence , Cardiotocography/statistics & numerical data , Decision Support Systems, Clinical , Decision Support Techniques , Obstetrics/statistics & numerical data , Pattern Recognition, Automated/methods , Humans , Observer Variation , Reproducibility of Results , Sensitivity and Specificity
7.
BMC Pregnancy Childbirth ; 14: 16, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24418387

ABSTRACT

BACKGROUND: Cardiotocography (CTG) is a monitoring of fetal heart rate and uterine contractions. Since 1960 it is routinely used by obstetricians to assess fetal well-being. Many attempts to introduce methods of automatic signal processing and evaluation have appeared during the last 20 years, however still no significant progress similar to that in the domain of adult heart rate variability, where open access databases are available (e.g. MIT-BIH), is visible. Based on a thorough review of the relevant publications, presented in this paper, the shortcomings of the current state are obvious. A lack of common ground for clinicians and technicians in the field hinders clinically usable progress. Our open access database of digital intrapartum cardiotocographic recordings aims to change that. DESCRIPTION: The intrapartum CTG database consists in total of 552 intrapartum recordings, which were acquired between April 2010 and August 2012 at the obstetrics ward of the University Hospital in Brno, Czech Republic. All recordings were stored in electronic form in the OB TraceVue®;system. The recordings were selected from 9164 intrapartum recordings with clinical as well as technical considerations in mind. All recordings are at most 90 minutes long and start a maximum of 90 minutes before delivery. The time relation of CTG to delivery is known as well as the length of the second stage of labor which does not exceed 30 minutes. The majority of recordings (all but 46 cesarean sections) is - on purpose - from vaginal deliveries. All recordings have available biochemical markers as well as some more general clinical features. Full description of the database and reasoning behind selection of the parameters is presented in the paper. CONCLUSION: A new open-access CTG database is introduced which should give the research community common ground for comparison of results on reasonably large database. We anticipate that after reading the paper, the reader will understand the context of the field from clinical and technical perspectives which will enable him/her to use the database and also understand its limitations.


Subject(s)
Access to Information , Cardiotocography , Databases, Factual , Heart Rate, Fetal , Signal Processing, Computer-Assisted , Acid-Base Imbalance , Adult , Apgar Score , Female , Fetal Blood/chemistry , Fetal Distress/diagnosis , Humans , Hydrogen-Ion Concentration , Parturition , Pregnancy
8.
Article in English | MEDLINE | ID: mdl-25569893

ABSTRACT

Electronic Fetal Monitoring in the form of cardiotocography is routinely used for fetal assessment both during pregnancy and delivery. However its interpretation requires a high level of expertise and even then the assessment is somewhat subjective as it has been proven by the high inter and intra-observer variability. Therefore the scientific community seeks for more objective methods for its interpretation. Along this path, presented work proposes a classification approach, which is based on a latent class analysis method that attempts to produce more objective labeling of the training cases, a step which is vital in a classification problem. The method is combined with a simple logistic regression approach under two different schemes: a standard multi-class classification formulation and an ordinal classification one. The results are promising suggesting that more effort should be put in this proposed approach.


Subject(s)
Algorithms , Heart Rate, Fetal/physiology , Cardiotocography , Databases as Topic , Female , Humans , Likelihood Functions , Logistic Models , Pregnancy , Probability
9.
Article in English | MEDLINE | ID: mdl-22255719

ABSTRACT

Cardiotocography (CTG) is the monitoring of fetal heart rate (FHR) and uterine contractions (TOCO) since 1960's used routinely by obstetricians to detect fetal hypoxia. The evaluation of the FHR in clinical settings is based on an evaluation of macroscopic morphological features and so far has managed to avoid adopting any achievements from the HRV research field. In this work, most of the ever-used features utilized for FHR characterization, including FIGO, HRV, nonlinear, wavelet, and time and frequency domain features, are investigated and the features are assessed based on their statistical significance in the task of distinguishing the FHR into three FIGO classes. Annotation derived from the panel of experts instead of the commonly utilized pH values was used for evaluation of the features on a large data set (552 records). We conclude the paper by presenting the best uncorrelated features and their individual rank of importance according to the meta-analysis of three different ranking methods. Number of acceleration and deceleration, interval index, as well as Lempel-Ziv complexity and Higuchi's fractal dimension are among the top five features.


Subject(s)
Algorithms , Cardiotocography/methods , Diagnosis, Computer-Assisted/methods , Expert Testimony , Heart Rate, Fetal/physiology , Humans , Observer Variation , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...