Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Br J Haematol ; 178(5): 781-793, 2017 09.
Article in English | MEDLINE | ID: mdl-28597546

ABSTRACT

New effective treatments are needed to improve outcomes for multiple myeloma (MM) patients. Receptors with restricted expression on plasma cells (PCs) represent attractive new therapeutic targets. The endothelin-1 (EDN1) axis, consisting of EDN1 acting through EDN-receptor A (EDNRA) and B (EDNRB), was previously shown to be overexpressed in several tumours, including MM. However, there is incomplete understanding of how EDN1 axis regulates MM growth and response to therapy. Besides EDNRA, the majority of MM cell lines and primary malignant PCs express high levels of EDNRB and release EDN1. Similarly, bone-marrow microenvironment cells also secrete EDN1. Investigating the extent of epigenetic dysregulation of EDNRB gene in MM, we found that hypermethylation of EDNRB promoter and subsequent down-regulation of EDNRB gene was observed in PCs or B lymphocytes from healthy donors compared to EDNRB-expressing malignant PCs. Pharmacological blockade with the dual EDN1 receptor antagonist bosentan decreased cell viability and MAPK activation of U266 and RPMI-8226 cells. Interestingly, the combination of bosentan and the proteasome inhibitor bortezomib, currently approved for MM treatment, resulted in synergistic cytotoxic effects. Overall, our data has uncovered EDN1-mediated autocrine and paracrine mechanisms that regulate malignant PCs growth and drug response, and support EDN1 receptors as new therapeutic targets in MM.


Subject(s)
Endothelin A Receptor Antagonists/pharmacology , Multiple Myeloma/blood , Receptor, Endothelin A/blood , Adult , Aged , Aged, 80 and over , Autocrine Communication/physiology , Bortezomib/pharmacology , Bosentan , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/physiology , DNA Methylation , DNA, Neoplasm/genetics , Drug Synergism , Endothelin-1/blood , Endothelin-1/physiology , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Molecular Targeted Therapy/methods , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Plasma Cells/metabolism , Promoter Regions, Genetic , Receptor, Endothelin A/genetics , Sulfonamides/pharmacology , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/pathology
3.
Blood ; 129(10): 1343-1356, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28053192

ABSTRACT

The identification of discrete neutrophil populations, as well as the characterization of their immunoregulatory properties, is an emerging topic under extensive investigation. In such regard, the presence of circulating CD66b+ neutrophil populations, exerting either immunosuppressive or proinflammatory functions, has been described in several acute and chronic inflammatory conditions. However, due to the lack of specific markers, the precise phenotype and maturation status of these neutrophil populations remain unclear. Herein, we report that CD10, also known as common acute lymphoblastic leukemia antigen, neutral endopeptidase, or enkephalinase, can be used as a marker that, within heterogeneous populations of circulating CD66b+ neutrophils present in inflammatory conditions, clearly distinguishes the mature from the immature ones. Accordingly, we observed that the previously described immunosuppressive neutrophil population that appears in the circulation of granulocyte colony-stimulating factor (G-CSF)-treated donors (GDs) consists of mature CD66b+CD10+ neutrophils displaying an activated phenotype. These neutrophils inhibit proliferation and interferon γ (IFNγ) production by T cells via a CD18-mediated contact-dependent arginase 1 release. By contrast, we found that immature CD66b+CD10- neutrophils, also present in GDs, display an immature morphology, promote T-cell survival, and enhance proliferation and IFNγ production by T cells. Altogether, our findings uncover that in GDs, circulating mature and immature neutrophils, distinguished by their differential CD10 expression, exert opposite immunoregulatory properties. Therefore, CD10 might be used as a phenotypic marker discriminating mature neutrophils from immature neutrophil populations present in patients with acute or chronic inflammatory conditions, as well as facilitating their isolation, to better define their specific immunoregulatory properties.


Subject(s)
Biomarkers/analysis , Lymphocyte Activation/immunology , Neprilysin/biosynthesis , Neutrophils/immunology , T-Lymphocytes/immunology , Cell Separation , Flow Cytometry , Granulocyte Colony-Stimulating Factor/immunology , Humans , Neprilysin/analysis , Neprilysin/immunology
4.
Oncotarget ; 7(19): 27676-88, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27050283

ABSTRACT

Human granulocytic myeloid-derived suppressor cells (G-MDSCs) have been described as low-density immunosuppressive CD66b+CD33dimHLA-DR-granulocytes that co-purify with mononuclear cells after density gradient centrifugation of blood from cancer patients. The role of G-MDSCs in Hodgkin (HL) and non-Hodgkin lymphoma (NHL) remains unclear.The percentage and immunophenotype of CD66b+CD33dimHLA-DR-cells were analyzed in PBMCs from HL and B-cell NHL patients (n = 124) and healthy donors (n = 48). The immunosuppressive functions of these cells were tested in vitro. Correlations between CD66b+CD33dimHLA-DR-cells and patient clinicopathological features and outcome, were evaluated.CD66b+CD33dimHLA-DR-cells were increased in PBMCs from HL and B-cell NHL patients as compared to healthy donors: 2.18 (0.02-70.92) vs 0.42 (0.04-2.97), p < 0.0001. Their percentage remained significantly higher even considering HL (n = 31), indolent (n = 31) and aggressive (n = 62) B-cell NHL patients separately: 1.54 (0.28-26.34), 2.15 (0.02-20.08), and 2.96 (0.25-70.92), respectively, p < 0.0001. CD66b+CD33dimHLA-DR-cells in patient PBMCs were mostly composed of mature CD11b+CD16+ low-density neutrophils in an activated status, as revealed by their higher CD11b and CD66b expression as compared to conventionally isolated (normal-density) autologous or healthy donor neutrophils. The in vitro depletion of CD66b+ cells from patient PBMCs restored the proliferation of autologous T cells. Higher frequencies of CD66b+CD33dimHLA-DR- G-MDSCs correlated significantly with unfavorable prognostic index scores and a shorter freedom from disease progression.PBMCs from HL and B-cell NHL patients contain a population of CD66b+CD33dimHLA-DR- G-MDSCs, mostly composed of activated low-density neutrophils with immunosuppressive properties. These findings disclose a previously unknown G-MDSC-mediated mechanism of immune-escape in lymphomas, therefore anticipating possible targets for therapeutic interventions.


Subject(s)
Granulocytes/immunology , Hodgkin Disease/blood , Lymphoma, Non-Hodgkin/blood , Myeloid Cells/immunology , Myeloid-Derived Suppressor Cells/immunology , Adolescent , Adult , Aged , Cell Proliferation/physiology , Female , Granulocytes/pathology , Hodgkin Disease/immunology , Hodgkin Disease/pathology , Humans , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/pathology , Male , Middle Aged , Myeloid Cells/pathology , Myeloid-Derived Suppressor Cells/pathology , Neutrophils/immunology , Neutrophils/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...