Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Musculoskelet Neuronal Interact ; 21(2): 279-286, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34059573

ABSTRACT

OBJECTIVE: To describe the effects of strength exercise practice during pregnancy on the offspring's development parameters: growth and motor performance, hippocampal neuroplasticity, and stress levels. METHODS: Pregnant Wistar rats were divided into two groups: sedentary and exercised rats. Exercised pregnant rats were subjected to a strength training protocol (vertical ladder climbing) throughout the gestational period. Male offspring's body weight, length, and head size were evaluated during the neonatal period (postnatal days [P]2-P21), as well as motor milestones during P0-P8. At P8, a set of male pups were subjected to global hippocampal DNA methylation, hippocampal cell proliferation, and plasma corticosterone concentration. RESULTS: Offspring from trained mothers presented a transient change in body morphometric evaluations, no differences in milestone assessments, enhancement of cell proliferation in the dentate gyrus of the hippocampus, and decreased global hippocampal DNA methylation compared with the offspring from sedentary mothers. Furthermore, strength training during pregnancy did not change the corticosterone concentration of exercised mothers and their offspring. CONCLUSIONS: These data indicate that strength training can protect offspring's development and could impact positively on parameters linked to cognitive function. This study provides a greater understanding of the effects of strength exercise practiced during pregnancy on the offspring's health.


Subject(s)
Resistance Training , Animals , Animals, Newborn , Corticosterone , Female , Hippocampus , Humans , Male , Pregnancy , Rats , Rats, Wistar
2.
Physiol Behav ; 230: 113306, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33359430

ABSTRACT

Studies indicate that gestational exercise practice positively impacts the offspring's cognition. Nevertheless, the influence of maternal resistance exercise, different periods of exercise practice, and the inter- and transgenerational effects involved in these responses are not known. This study sought to report the influence of the maternal practice of resistance exercise on offspring's cognitive function, exploring behavior, and neuroplastic and epigenetic marks in the hippocampus. Female Wistar rats were divided into four groups: sedentary (SS), exercised during pregnancy (SE), exercised before pregnancy (ES), and exercised before and during pregnancy (EE). Exercised rats were submitted to a resistance exercise protocol (vertical ladder climbing). Between postnatal days (P)81 and P85, male offspring were submitted to the Morris water maze test. At P85, the following analyses were performed in offspring's hippocampus: expression of IGF-1 and BrdU+ cells, global DNA methylation, H3/H4 acetylation, and HDAC2 amount. Only the offspring of SE mothers presented subtly better performance on learning and memory tasks, associated with lower HDAC2 amount. Offspring from ES mothers presented an overexpression of hippocampal neuroplastic marks (BrdU+ and IGF-1), as well as a decrease of DNA methylation and an increase in H4 acetylation. Offspring from EE mothers (continuously exercised) did not present modifications in plasticity or epigenetic parameters. This is the first study to observe the influence of maternal resistance exercise on offspring's brains. The findings provide evidence that offspring's hippocampus plasticity is influenced by exercise performed in isolated periods (pre- or gestationally) more than that performed continually.


Subject(s)
Resistance Training , Adult , Animals , Epigenesis, Genetic , Female , Hippocampus , Humans , Male , Memory , Pregnancy , Rats , Rats, Wistar
3.
Neuroscience ; 418: 218-230, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31473277

ABSTRACT

Intrauterine exposure to exercise is beneficial to cognition of the offspring. Although it is advisable to start practicing physical exercise during pregnancy, it is probable that practitioners or sedentary women keep their previous habits during gestation. This study was designed to evaluate the effects of maternal aerobic exercise initiated before and maintained during gestation, or performed in these isolated periods, on cognition and plasticity in the hippocampus of offspring. Groups of male pups were categorized by the exposure of their mothers to: treadmill off (sedentary, SS), pregestational exercise (ES), gestational exercise (SE) or combined protocols (EE). Between postnatal day 20 (P20) and P23 the offspring received one daily 5-bromo-2'-deoxiuridine (BrdU) injection and, from P47 to P51, were evaluated by the Morris water maze task. At P53, hippocampal global DNA methylation, survival of progenitor cells (BrdU), Brain-derived Neurotrophic Factor (BDNF) and reelin levels were measured. The offspring from ES, SE and EE mothers demonstrated improved spatial learning compared to SS, but hippocampal DNA methylation was significantly modified only in the offspring from ES mothers. The offspring from ES and SE mothers presented higher number of BrdU+ and reelin+ hippocampal cells than EE and SS. No differences were observed in the BDNF levels among the groups. The maternal pregestational and gestational isolated exercise protocols showed similar effects for offspring plasticity and spatial cognitive ability, while the combined protocol simply improved their spatial learning. Interestingly, only pregestational exercise was able to induce plasticity in the offspring hippocampus associated with modulation of global DNA methylation.


Subject(s)
Behavior, Animal/physiology , DNA Methylation/physiology , Prenatal Exposure Delayed Effects/physiopathology , Spatial Learning/physiology , Animals , Cognition/physiology , Female , Maze Learning/physiology , Physical Conditioning, Animal/methods , Pregnancy , Rats, Wistar , Reelin Protein
4.
Cell Mol Neurobiol ; 39(3): 401-414, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30739252

ABSTRACT

Maternal diabetes constitutes an unfavorable intrauterine environment for offspring development. Although it is known that diabetes can cause brain alterations and increased risk for neurologic disorders, the relationship between neuroimmune activation, brain changes, and neurodevelopment deficits in the offspring remains unclear. In order to elucidate the short- and long-term biological basis of the developmental outcomes caused by the severe uncontrolled maternal hyperglycemia, we studied apoptosis, neurogenesis, and neuroinflammation pathways in the hippocampus of neonates and young rats born to diabetic dams. Diabetes was induced on gestational day 5 by an injection of streptozotocin. Evaluations of milestones, body growth, and inhibitory avoidance were performed to monitor the offspring development and behavior. Hippocampal modifications were studied through cellular survival by BrdU in the dentate gyrus, expression of apoptosis-regulatory proteins (procaspase 3, caspase 3, and Bcl-2), BDNF, and neuroinflammatory modulation by interleukins, MHC-I, MHC-II, Iba-1, and GFAP proteins. Severe maternal diabetes caused microsomia and neurodevelopmental delay in pups and decrease of Bcl-2, procaspase 3, and caspase 3 in the hippocampus. Moreover, in a later stage of development, it was found an increase of TNF-α and a decrease of procaspase 3, caspase 3, MHC-I, IL-1ß, and BDNF in the hippocampus, as well as impairment in cellular survival in the dentate gyrus. This study showed significant short- and long-term commitments on the development, apoptosis, cell survival, and neuroinflammation in the offspring hippocampus induced by severe uncontrolled maternal hyperglycemia. The data reinforce the need for treatment of maternal hyperglycemic states during pregnancy and breast-feeding.


Subject(s)
Apoptosis , Hippocampus/growth & development , Hippocampus/pathology , Hyperglycemia/complications , Inflammation/pathology , Prenatal Exposure Delayed Effects/pathology , Adrenal Glands/pathology , Animals , Animals, Newborn , Avoidance Learning , Body Weight , Brain-Derived Neurotrophic Factor/metabolism , Cell Survival , Cytokines/metabolism , Female , Glucose Tolerance Test , Liver/pathology , Organ Size , Pregnancy , Rats, Wistar , Streptozocin , Thymus Gland/pathology
5.
Neural Regen Res ; 14(3): 491-500, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30539818

ABSTRACT

It is widely known that maternal physical exercise is able to induce beneficial improvements in offspring cognition; however, the effects of paternal exercise have not been explored in detail. The present study was designed to evaluate the impact of paternal physical exercise on memory and learning, neuroplasticity and DNA methylation levels in the hippocampus of male offspring. Adult male Wistar rats were divided into two groups: sedentary or exercised fathers. The paternal preconception exercise protocol consisted of treadmill running, 20 minutes daily, 5 consecutive days per week for 22 days, while the mothers were not trained. After mating, paternal sperm was collected for global DNA methylation analysis. At postnatal day 53, the offspring were euthanized, and the hippocampus was dissected to measure cell survival by 5-bromo-2'-deoxiuridine and to determine the expression of synaptophysin, reelin, brain-derived neurotrophic factor and global DNA methylation levels. To measure spatial memory and learning changes in offspring, the Morris water maze paradigm was used. There was an improvement in spatial learning, as well as a significant decrease in hippocampal global DNA methylation levels in the offspring from exercised fathers compared with those from sedentary ones; however, no changes were observed in neuroplasticity biomarkers brain-derived neurotrophic factor, reelin and 5-bromo-2'-deoxiuridine. Finally, the global DNA methylation of paternal sperm was not significantly changed by physical exercise. These results suggest a link between paternal preconception physical activity and cognitive benefit, which may be associated with hippocampal epigenetic programming in male offspring. However, the biological mechanisms of this modulation remain unclear.

6.
Behav Brain Res ; 348: 1-8, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29614250

ABSTRACT

Maternal exercise is known to have beneficial effects in progeny development, but the influence of paternal exercise on the offspring still unclear. Since spermatogenesis is a continuous process, the father's life experiences can reprogram epigenetic content of the sperm and somehow interfere on offspring phenotype. This study was designed to evaluate the effects of paternal physical exercise on cognitive and physical development and on hippocampal DNA methylation levels of the offspring. Adult male Wistar rats were divided into two groups: sedentary and exercised. The exercise protocol occurred before mating and consisted of treadmill running, 5 consecutive days/week for 8 weeks (20 min/day). The mothers were not trained. The following developmental parameters were examined in male offspring: body growth, physical and cognitive performance, weights of adrenal glands, gonadal fat and hindlimb muscles, BDNF expression and global DNA methylation at the hippocampus. The progeny of trained and sedentary fathers did not differ in relation to physical parameters and performance, spatial memory and BDNF expression. However, paternal exercise promoted a decrease in offspring´s relative gonadal fat weight and a lower percentage of global hippocampal DNA methylation compared to offspring of sedentary fathers. These results pointed to interference of male physical activity at the time of conception on adiposity and hippocampal epigenetic reprogramming of male offspring. The data reinforces that exercise does not harm the descendant's development and emphasize the benefits to include the practice of physical exercise in a healthier lifestyle of the parents. Nevertheless, future studies are necessary and should investigate further the long-effects of epigenetic mechanisms in order to elucidate the father's contribution in fetal programming.


Subject(s)
DNA Methylation/physiology , Paternal Inheritance/genetics , Paternal Inheritance/physiology , Animals , Body Weight , Cognition/physiology , Epigenesis, Genetic/genetics , Hippocampus/metabolism , Hippocampus/physiology , Male , Obesity/metabolism , Physical Conditioning, Animal/physiology , Rats , Rats, Wistar
7.
Brain Res Bull ; 128: 58-67, 2017 01.
Article in English | MEDLINE | ID: mdl-27940102

ABSTRACT

Several physiotherapy approaches are used with different aims in the treatment of cerebral palsy (CP), such as the early stimulation and the locomotor training, but their biological effects, isolated or combined, are not completely known. In animals models, these strategies can be compared, with due translational restrictions, to the environmental enrichment (EE), that involves the enhancement of animal's physical and social environment, and locomotor stimulation (LS), that can be performed using the treadmill adapted for rats. This study was designed to describe which biological and functional mechanisms underlying rehabilitative process in clinical practice. Male rat pups were initially divided in two groups: control (healthy) and submitted to a CP model. Then, pups were divided in eight groups: CP, CPEE, CPLS, CPEELS and its respectively control groups. Functional outcomes were assessed at the postnatal day (P) 31 and P52. The tibialis anterior and soleus muscles, tibia bone parameters, the expression of synaptophysin in the primary motor cortex (M1) and ventral horn (VH) of the spinal cord, were evaluated. The association of therapies was able to improve the functional assessments and musculoskeletal parameters. Isolated therapies presented complementary benefits in CP, but the association of therapies proved to be a fundamental and effective strategy to functional recovery, besides alter positively all biological tissues evaluated in this study.


Subject(s)
Cerebral Palsy/physiopathology , Cerebral Palsy/therapy , Environment , Exercise Therapy , Walking/physiology , Animals , Cerebral Palsy/pathology , Disease Models, Animal , Housing, Animal , Immunohistochemistry , Male , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Skills/physiology , Muscle, Skeletal/pathology , Organ Size , Rats, Wistar , Spinal Cord/metabolism , Spinal Cord/pathology , Synaptophysin/metabolism , Tibia/pathology
8.
Cell Mol Neurobiol ; 34(8): 1097-101, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25149076

ABSTRACT

Studies have pointed out the relationship between neuroprotective exercise effects and epigenetic mechanisms on the hippocampus. Considering the role of frontal cortex on brain functions, we investigated the impact of different exercise protocols on enzymatic system involved with histone acetylation status, histone acetyltransferases (HATs), and histone desacetylases (HDACs) in frontal cortices from Wistar rats. Male Wistar rats aged 3 months were submitted to a single session or a daily running protocol during 2 weeks. The single session enhanced HAT activity, while the moderate daily exercise protocol reduced the HDAC activity. Our results indicate that frontal cortex is susceptible to epigenetic modulation following exercise and that both exercise protocols seem to induce a histone hyperacetylation condition in this brain area.


Subject(s)
Frontal Lobe/enzymology , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Physical Conditioning, Animal , Animals , Male , Rats, Wistar
9.
Physiol Behav ; 129: 160-6, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24548682

ABSTRACT

There are scarce data on the neurotoxicity in mammalian induced by tannery wastewaters. Previously, the anxiogenic effect of tannery wastewater was demonstrated in mice, while wastewater submitted to photoelectrooxidation (PEO) process treatment did not affect the anxiety state. Considering that species may response differently to xenobiotics, the aim of the present work was to study the effects of exposure to tannery wastewaters (non-PEO or PEO-treated) on behavioral and neurochemical markers in another species of laboratory animals, specifically Wistar rats. Male Wistar rats were given free access to water bottles containing non-PEO or PEO-treated tannery wastewaters (0.1, 1 and 5% in drinking water). During the exposure, behavioral tests of anxiety (elevated plus-maze, neophobia, open field and light-dark box), depression (forced swimming) and memory (inhibitory avoidance, novel object and discriminative avoidance) were performed. On the 30th day, brain structures were dissected out to evaluate cellular oxidative state (hippocampus, cerebellum and striatum) and acetylcholinesterase activity (hippocampus and striatum). Exposure to tannery effluent with or without photoelectrochemical treatment did not alter any behavioral and neurochemical parameters evaluated. Our data indicate that Wistar rats may not be an adequate species for ecotoxicological studies involving tannery effluents and that POE treatment did not generate other toxic compounds.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Industrial Waste , Wastewater , Acetylcholinesterase/metabolism , Animals , Anxiety/chemically induced , Cerebellum/drug effects , Cerebellum/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Depressive Disorder/chemically induced , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory/drug effects , Neuropsychological Tests , Oxidation-Reduction/drug effects , Rats, Wistar
10.
Neurobiol Learn Mem ; 101: 94-102, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23357282

ABSTRACT

It has been described that exercise can modulate both inflammatory response and epigenetic modifications, although the effect of exercise on these parameters during the normal brain aging process yet remains poorly understood. Here, we investigated the effect of aging and treadmill exercise on inflammatory and epigenetic parameters specifically pro and anti-inflammatory cytokines levels, activation of NF-kB and histone H4 acetylation levels in hippocampus from Wistar rats. Additionally, we evaluated aversive memory through inhibitory avoidance task. Rats of 3 and 20 months of age were assigned to non-exercised (sedentary) and exercised (running daily for 20 min for 2 weeks) groups. The effect of daily forced exercise in the treadmill was assessed. The levels of inflammatory and epigenetic parameters were determined 1h, 18 h, 3 days or 7 days after the last training session of exercise. It was observed an age-related decline on aversive memory, as well as aged rats showed increased hippocampal levels of inflammatory markers, such as TNFα, IL1-ß and NF-kB and decreased IL-4 levels, an anti-inflammatory cytokine. Moreover, lower levels of global histone H4 acetylation were also observed in hippocampi from aged rats. Interestingly, there was a significant correlation between the biochemical markers and the inhibitory avoidance test performance. The forced exercise protocol ameliorated aging-related memory decline, decreased pro-inflammatory markers and increased histone H4 acetylation levels in hippocampi 20-months-old rats, while increased acutely IL-4 levels in hippocampi from young adult rats. Together, these results suggest that an imbalance of inflammatory markers might be involved to the aging-related aversive memory impairment. Additionally, our exercise protocol may reverse aging-related memory decline through improving cytokine profile.


Subject(s)
Aging/metabolism , Hippocampus/metabolism , Inflammation Mediators/metabolism , Memory/physiology , Physical Conditioning, Animal/physiology , Acetylation , Aging/physiology , Animals , Avoidance Learning/physiology , Epigenesis, Genetic , Histones/metabolism , Interleukin-1beta/metabolism , Interleukin-4/metabolism , Male , NF-kappa B/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
11.
Exp Gerontol ; 48(2): 136-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23201423

ABSTRACT

Regular exercise improves learning and memory, including during aging process. Interestingly, the imbalance of epigenetic mechanisms has been linked to age-related cognitive deficits. However, studies about epigenetic alterations after exercise during the aging process are rare. In this preliminary study we investigated the effect of aging and exercise on DNA methyltransferases (DNMT1 and DNMT3b) and H3-K9 methylation levels in hippocampus from 3 and 20-months aged Wistar rats. The animals were submitted to two exercise protocols: single session or chronic treadmill protocol. DNMT1 and H3-K9 methylation levels were decreased in hippocampus from aged rats. The single exercise session decreased both DNMT3b and DNMT1 levels in young adult rats, without any effect in the aged group. Both exercise protocols reduced H3-K9 methylation levels in young adult rats, while the single session reversed the changes on H3-K9 methylation levels induced by aging. Together, these results suggest that an imbalance on DNMTs and H3-K9 methylation levels might be linked to the brain aging process and that the outcome to exercise seems to vary through lifespan.


Subject(s)
Aging/genetics , DNA Methylation , Epigenesis, Genetic , Hippocampus/metabolism , Physical Exertion/genetics , Age Factors , Animals , Biomarkers/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , Histones/metabolism , Lysine , Male , Rats , Rats, Wistar , DNA Methyltransferase 3B
12.
Ecotoxicol Environ Saf ; 84: 319-24, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22910280

ABSTRACT

The decomposition of solid waste in landfill is responsible for the formation of leachate, a dark liquid with an unpleasant odor; studies investigating its toxicity on mammals are rare. Oxidative stress has been considered as an important biochemical mechanism of the toxicity of several xenobiotics. The aim of this study was to evaluate the effects of landfill leachate on oxidative parameters in striatum, hippocampus and liver homogenates of mice and rats. In order to propose a clean technology for the treatment of leachate, we also investigated the effects of landfill leachate submitted to photoelectrooxidation process (PEO). The homogenates of cerebral structures and liver of Swiss albino mice and Wistar rats were incubated with different concentrations of non-PEO landfill leachate and PEO-treated landfill leachate. After the incubation, the levels of free radicals, determined by 2',7'-dichlorofluorescein diacetate probe, and the lipoperoxidation, quantified by the thiobarbituric acid reactive substances, were evaluated. There was an increase on the levels of free radicals in striatum of both mice and rats when exposed to non-PEO leachate. Moreover, PEO-treated leachate increased the lipoperoxidation in striatum homogenates from rodents. However, both leachates did not alter any of the parameters evaluated in the hippocampus. In the liver, the incubation with leachates induced an augment on levels of free radicals only in samples of mice. In addition, PEO-treated leachate increased the lipoperoxidation indexes in the liver of mice and rats. These results suggest that the landfill leachate can induce an oxidative stress state in the liver and the striatum of rodents. Additionally, the PEO process was unable to efficiently alter the toxic compounds of landfill leachate.


Subject(s)
Brain/drug effects , Liver/drug effects , Oxidative Stress/drug effects , Refuse Disposal , Water Pollutants, Chemical/toxicity , Animals , Free Radicals/analysis , Liver/chemistry , Male , Mice , Oxidation-Reduction , Rats , Rats, Wistar
13.
Neurobiol Learn Mem ; 98(2): 182-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22728946

ABSTRACT

Exercise induces brain function adaptations and improves learning and memory; however the time window of exercise effects has been poorly investigated. Studies demonstrate an important role for cyclooxygenase-2 (COX-2) pathway function in the mechanisms underlying memory formation. The aim of present work was to investigate the effects of treadmill exercise on aversive memory and COX-2, PGE(2) and E-prostanoid receptors contents in the rat hippocampus at different time points after exercise has ended. Adult male Wistar rats were assigned to non-exercised (sedentary) and exercised (running daily for 20min, for 2weeks) groups. The inhibitory avoidance task was used to assess aversive memory and the COX-2, PGE(2) and E-prostanoid receptors (EP1, EP2, EP3 and EP4) levels were determined 1h, 18h, 3days or 7days after the last training session of treadmill exercise. The step down latency in the inhibitory avoidance, COX-2 and EP4 receptors levels were acutely increased by exercise, with a significant positive correlation between aversive memory performance and COX-2 levels. Increased EP2 content decreased PGE(2) levels were observed 7days after the last running session. The treadmill exercise protocol facilitates inhibitory avoidance memory and induces time-dependent changes on COX-2 pathways function (COX-2, PGE(2) and EP receptors).


Subject(s)
Avoidance Learning/physiology , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Hippocampus/metabolism , Memory/physiology , Physical Conditioning, Animal/physiology , Receptors, Prostaglandin E/metabolism , Animals , Male , Rats , Rats, Wistar , Time Factors
14.
Brain Res ; 1438: 85-92, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22244305

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HI) is a major cause of nervous system damage and neurological morbidity. Perinatal malnutrition affects morphological, biochemical and behavioral aspects of neural development, including pathophysiological cascades of cell death triggered by ischemic events, so modifying resulting brain damage. Female Wistar rats were subjected to protein restriction during pregnancy and lactation (control group: 25% soybean protein; malnourished group: 7%). Seven days after delivery (PND7), their offspring were submitted to unilateral cerebral HI; rats were then tested for sensorimotor (PND7 and PND60) and memory (PND60) functions. Offspring of malnourished mothers showed marked reduction in body weight starting in lactation and persisting during the entire period of observation. There was a greater sensorimotor deficit after HI in malnourished (M) animals, in righting reflex and in home bedding task, indicating an interaction between diet and hypoxia-ischemia. At PND60, HI rats showed impaired performance when compared to controls in training and test sessions of rota-rod task, however there was no effect of malnutrition per se. In the open field, nourished HI (HI-N) presented an increase in crossings number; this effect was not present in HI-M group. Surprisingly, HI-M rats presented a better performance in inhibitory avoidance task and a smaller hemispheric brain damage as compared to HI-N animals. Our data points to a possible metabolic adaptation in hypoxic-ischemic animals receiving protein malnutrition during pregnancy and lactation; apparently we observed a neuroprotective effect of diet, possibly decreasing the brain energy demand, under a hypoxic-ischemic situation.


Subject(s)
Fetal Nutrition Disorders/physiopathology , Hypoxia-Ischemia, Brain/physiopathology , Protein-Energy Malnutrition/physiopathology , Animals , Avoidance Learning , Body Weight , Diet, Protein-Restricted , Dietary Proteins/administration & dosage , Female , Hypoxia-Ischemia, Brain/pathology , Lactation , Memory , Motor Activity , Pregnancy , Pregnancy Complications/physiopathology , Rats , Rats, Wistar , Rotarod Performance Test
15.
Neurochem Int ; 58(4): 527-32, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21238526

ABSTRACT

Ascorbate, an intracellular antioxidant, has been considered critical for neuronal protection against oxidant stress, which is supported especially by in vitro studies. Besides, it has been demonstrated an age-related decrease in brain ascorbate levels. The aims of the present study were to investigate ascorbate uptake in hippocampal slices from old Wistar rats, as well as its neuroprotective effects in in vitro and in vivo assays. Hippocampal slices from male Wistar rats aged 4, 11 and 24 months were incubated with radiolabeled ascorbate and incorporated radioactivity was measured. Hippocampal slices from rats were incubated with different concentrations of ascorbate and submitted to H(2)O(2)-induced injury, cellular damage and S100B protein levels were evaluated. The effect of chronic administration of ascorbate on cellular oxidative state and astrocyte biochemical parameters in the hippocampus from 18-months-old Wistar rats was also studied. The ascorbate uptake was decreased in hippocampal slices from old-aged rats, while supplementation with ascorbate (2 weeks) did not modify any tested oxidative status in the hippocampus and the incubation was unable to protect hippocampal slices submitted to oxidative damage (H(2)O(2)) from old rats. Our data suggest that the decline of ascorbate uptake might be involved in the brain greater susceptibility to oxidative damage with advancing age and both in vitro and vivo assays suggest that ascorbate supplementation did not protect hippocampal cells.


Subject(s)
Aging/metabolism , Ascorbic Acid/metabolism , Hippocampus/metabolism , Animals , Hydrogen Peroxide/pharmacology , In Vitro Techniques , Male , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...