Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 164(10)2023 08 28.
Article in English | MEDLINE | ID: mdl-37624591

ABSTRACT

Gestational diabetes is a common pregnancy complication that adversely influences the health and survival of mother and child. Pancreatic islet serotonin signaling plays an important role in ß-cell proliferation in pregnancy, and environmental and genetic factors that disrupt serotonin signaling are associated with gestational diabetes in mice. Our previous studies show that pregnant C57BL/6J mice fed a diet that is low in vitamin B6, a critical co-factor in serotonin synthesis, develop hyperglycemia and glucose intolerance, phenotypes that are consistent with gestational diabetes in humans. The current study shows that, unlike in the C57BL/6J mice, low vitamin B6 diet does not alter glucose tolerance and insulin secretion in pregnant DBA/2J mice. The hypothesis to be tested in the current study is that pregnant DBA/2J mice are protected against low vitamin B6-induced gestational diabetes due to their higher expression and enzymatic activities of tissue nonspecific alkaline phosphatase (ALPL) relative to C57BL/6J. ALPL is a rate-limiting enzyme that regulates vitamin B6 bioavailability. Interestingly, treating pregnant DBA/2J mice with 7.5 mg/kg/day of the ALPL inhibitor SBI-425 is associated with glucose intolerance in low vitamin B6-fed mice, implying that inhibition of ALPL activity is sufficient to modulate resilience to low vitamin B6-induced metabolic impairment.


Subject(s)
Diabetes, Gestational , Glucose Intolerance , Humans , Child , Female , Pregnancy , Animals , Mice , Mice, Inbred C57BL , Vitamin B 6/pharmacology , Glucose Intolerance/etiology , Mice, Inbred DBA , Serotonin , Diet/adverse effects
2.
Environ Health Perspect ; 130(3): 37010, 2022 03.
Article in English | MEDLINE | ID: mdl-35343813

ABSTRACT

BACKGROUND: Bisphenol A (BPA) exposure has been linked to miscarriages and pregnancy complications in humans. In contrast, the potential reproductive toxicity of BPA analogs, including tetrabromobisphenol A (TBBPA), is understudied. Furthermore, although environmental exposure has been linked to altered immune mediators, the effects of BPA and TBBPA on maternal-fetal immune tolerance during pregnancy have not been studied. The present study investigated whether exposure resulted in higher rates of pregnancy loss in mice, lower number of regulatory T cells (Tregs), and lower indoleamine 2,3 deoxygenase 1 (Ido1) expression, which provided evidence for mechanisms related to immune tolerance in pregnancy. OBJECTIVES: The purpose of this investigation was to characterize the effects of BPA and TBBPA exposure on pregnancy loss in mice and to study the percentage and number of Tregs and Ido1 expression and DNA methylation. METHODS: Analysis of fetal resorption and quantification of maternal and fetal immune cells by flow cytometry were performed in allogeneic and syngeneic pregnancies. Ido1 mRNA and protein expression, and DNA methylation in placentas from control and BPA- and TBBPA-exposed mice were analyzed using real-time quantitative polymerase chain reaction, immunofluorescence, and bisulfite sequencing analyses. RESULTS: BPA and TBBPA exposure resulted in higher rates of hemorrhaging in early allogeneic, but not syngeneic, conceptuses. In allogeneic pregnancies, BPA and TBBPA exposure was associated with higher fetal resorption rates and lower maternal Treg number. Importantly, these differences were associated with lower IDO1 protein expression in trophoblast giant cells and higher mean percentage Ido1 DNA methylation in embryonic day 9.5 placentas from BPA- and TBBPA-exposed mice. DISCUSSION: BPA- and TBBPA-induced pregnancy loss in mice was associated with perturbed IDO1-dependent maternal immune tolerance. https://doi.org/10.1289/EHP10640.


Subject(s)
Abortion, Spontaneous , Abortion, Spontaneous/chemically induced , Animals , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/toxicity , Female , Mice , Phenols/metabolism , Phenols/toxicity , Placenta/metabolism , Pregnancy
3.
Hum Mol Genet ; 28(4): 662-674, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30403776

ABSTRACT

Previous studies show that aberrant tryptophan catabolism reduces maternal immune tolerance and adversely impacts pregnancy outcomes. Tryptophan depletion in pregnancy is facilitated by increased activity of tryptophan-depleting enzymes [i.e. the indolamine-2,3 dioxygenase (IDO)1 and IDO2) in the placenta. In mice, inhibition of IDO1 activity during pregnancy results in fetal loss; however, despite its important role, regulation of Ido1 gene transcription is unknown. The current study shows that the Ido1 and Ido2 genes are imprinted and maternally expressed in mouse placentas. DNA methylation analysis demonstrates that nine CpG sites at the Ido1 promoter constitute a differentially methylated region that is highly methylated in sperm but unmethylated in oocytes. Bisulfite cloning sequencing analysis shows that the paternal allele is hypermethylated while the maternal allele shows low levels of methylation in E9.5 placenta. Further study in E9.5 placentas from the CBA/J X DBA/2 spontaneous abortion mouse model reveals that aberrant methylation of Ido1 is linked to pregnancy loss. DNA methylation analysis in humans shows that IDO1 is hypermethylated in human sperm but partially methylated in placentas, suggesting similar methylation patterns to mouse. Importantly, analysis in euploid placentas from first trimester pregnancy loss reveals that IDO1 methylation significantly differs between the two placenta cohorts, with most CpG sites showing increased percent of methylation in miscarriage placentas. Our study suggests that DNA methylation is linked to regulation of Ido1/IDO1 expression and altered Ido1/IDO1 DNA methylation can adversely influence pregnancy outcomes.


Subject(s)
Abortion, Spontaneous/genetics , DNA Methylation/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Abortion, Spontaneous/pathology , Animals , CpG Islands/genetics , Epigenesis, Genetic/genetics , Female , Genomic Imprinting/genetics , Humans , Male , Oocytes/metabolism , Placenta/metabolism , Pregnancy , Spermatozoa/metabolism
4.
J Neurosci ; 36(36): 9351-64, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27605611

ABSTRACT

UNLABELLED: Visual decisions often involve comparisons of sequential stimuli that can appear at any location in the visual field. The lateral prefrontal cortex (LPFC) in nonhuman primates, shown to play an important role in such comparisons, receives information about contralateral stimuli directly from sensory neurons in the same hemisphere, and about ipsilateral stimuli indirectly from neurons in the opposite hemisphere. This asymmetry of sensory inputs into the LPFC poses the question of whether and how its neurons incorporate sensory information arriving from the two hemispheres during memory-guided comparisons of visual motion. We found that, although responses of individual LPFC neurons to contralateral stimuli were stronger and emerged 40 ms earlier, they carried remarkably similar signals about motion direction in the two hemifields, with comparable direction selectivity and similar direction preferences. This similarity was also apparent around the time of the comparison between the current and remembered stimulus because both ipsilateral and contralateral responses showed similar signals reflecting the remembered direction. However, despite availability in the LPFC of motion information from across the visual field, these "comparison effects" required for the comparison stimuli to appear at the same retinal location. This strict dependence on spatial overlap of the comparison stimuli suggests participation of neurons with localized receptive fields in the comparison process. These results suggest that while LPFC incorporates many key aspects of the information arriving from sensory neurons residing in opposite hemispheres, it continues relying on the interactions with these neurons at the time of generating signals leading to successful perceptual decisions. SIGNIFICANCE STATEMENT: Visual decisions often involve comparisons of sequential visual motion that can appear at any location in the visual field. We show that during such comparisons, the lateral prefrontal cortex (LPFC) contains accurate representation of visual motion from across the visual field, supplied by motion processing neurons. However, at the time of comparison, LPFC neurons can only use this information to compute the differences between the stimuli, if stimuli appear at the same retinal location, implicating neurons with localized receptive fields in the comparison process. These findings show that sensory comparisons rely on the interactions between LPFC and sensory neurons that not only supply sensory signals but also actively participate in the comparison of these signals at the time of the decision.


Subject(s)
Memory/physiology , Motion Perception/physiology , Neurons/physiology , Orientation/physiology , Prefrontal Cortex/cytology , Visual Fields/physiology , Action Potentials/physiology , Animals , Functional Laterality , Macaca mulatta , Magnetic Resonance Imaging , Male , Motion , Photic Stimulation , Prefrontal Cortex/diagnostic imaging , Reaction Time/physiology
5.
J Neurosci ; 35(18): 7095-105, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25948260

ABSTRACT

The contribution of the lateral prefrontal cortex (LPFC) to working memory is the topic of active debate. On the one hand, it has been argued that the persistent delay activity in LPFC recorded during some working memory tasks is a reflection of sensory storage, the notion supported by some lesion studies. On the other hand, there is emerging evidence that the LPFC plays a key role in the maintenance of sensory information not by storing relevant visual signals but by allocating visual attention to such stimuli. In this study, we addressed this question by examining the effects of unilateral LPFC lesions during a working memory task requiring monkeys to compare directions of two moving stimuli, separated by a delay. The lesions resulted in impaired thresholds for contralesional stimuli at longer delays, and these deficits were most dramatic when the task required rapid reallocation of spatial attention. In addition, these effects were equally pronounced when the remembered stimuli were at threshold or moved coherently. The contralesional nature of the deficits points to the importance of the interactions between the LPFC and the motion processing neurons residing in extrastriate area MT. Delay-specificity of the deficit supports LPFC involvement in the maintenance stage of the comparison task. However, because this deficit was independent of stimulus features giving rise to the remembered direction and was most pronounced during rapid shifts of attention, its role is more likely to be attending and accessing the preserved motion signals rather than their storage.


Subject(s)
Memory, Short-Term/physiology , Motion Perception/physiology , Photic Stimulation/methods , Prefrontal Cortex/physiology , Visual Cortex/physiology , Animals , Brain Mapping/methods , Macaca mulatta , Male , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...