Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1260496, 2024.
Article in English | MEDLINE | ID: mdl-38665433

ABSTRACT

Introduction: In mitochondrial DNA (mtDNA) depletion syndrome (MDS), patients cannot maintain sufficient mtDNA for their energy needs. MDS presentations range from infantile encephalopathy with hepatopathy (Alpers syndrome) to adult chronic progressive external ophthalmoplegia. Most are caused by nucleotide imbalance or by defects in the mtDNA replisome. There is currently no curative treatment available. Nucleoside therapy is a promising experimental treatment for TK2 deficiency, where patients are supplemented with exogenous deoxypyrimidines. We aimed to explore the benefits of nucleoside supplementation in POLG and TWNK deficient fibroblasts. Methods: We used high-content fluorescence microscopy with software-based image analysis to assay mtDNA content and membrane potential quantitatively, using vital dyes PicoGreen and MitoTracker Red CMXRos respectively. We tested the effect of 15 combinations (A, T, G, C, AT, AC, AG, CT, CG, GT, ATC, ATG, AGC, TGC, ATGC) of deoxynucleoside supplements on mtDNA content of fibroblasts derived from four patients with MDS (POLG1, POLG2, DGUOK, TWNK) in both a replicating (10% dialysed FCS) and quiescent (0.1% dialysed FCS) state. We used qPCR to measure mtDNA content of supplemented and non-supplemented fibroblasts following mtDNA depletion using 20 µM ddC and after 14- and 21-day recovery in a quiescent state. Results: Nucleoside treatments at 200 µM that significantly increased mtDNA content also significantly reduced the number of cells remaining in culture after 7 days of treatment, as well as mitochondrial membrane potential. These toxic effects were abolished by reducing the concentration of nucleosides to 50 µM. In POLG1 and TWNK cells the combination of ATGC treatment increased mtDNA content the most after 7 days in non-replicating cells. ATGC nucleoside combination significantly increased the rate of mtDNA recovery in quiescent POLG1 cells following mtDNA depletion by ddC. Conclusion: High-content imaging enabled us to link mtDNA copy number with key read-outs linked to patient wellbeing. Elevated G increased mtDNA copy number but severely impaired fibroblast growth, potentially by inhibiting purine synthesis and/or causing replication stress. Combinations of nucleosides ATGC, T, or TC, benefited growth of cells harbouring POLG mutations. These combinations, one of which reflects a commercially available preparation, could be explored further for treatment of POLG patients.

2.
Sci Rep ; 10(1): 17955, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087772

ABSTRACT

Metampicillin is a ß-lactam antibiotic that is prepared by the reaction of ampicillin with formaldehyde. Although metampicillin has been studied for treatment of infections in animals and humans, its structure has been unclear. We report NMR studies revealing that metampicillin contains a formaldehyde-derived cyclic aminal. NMR time-course experiments with excess formaldehyde in solution show formation of another product with an additional exocyclic hemiaminal group formed by reaction with the cyclic aminal nitrogen. The exocyclic hemiaminal group is readily removed by reaction with the formaldehyde scavenger 1,3-cyclohexanedione, whereas the cyclic aminal methylene exhibits greater stability. The overall results assign the structure of metampicillin as containing a cyclic aminal and further reveal the potential for complexity in the reaction of formaldehyde with biomedicinally relevant molecules.

3.
Genome Res ; 30(10): 1393-1406, 2020 10.
Article in English | MEDLINE | ID: mdl-32963030

ABSTRACT

Epigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly understood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are integrated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. We observe widespread increases in chromatin accessibility at retrotransposons when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements has elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced additive effect of HDAC inhibition in DNA methylation-deficient cells demonstrates that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Histone Deacetylases/metabolism , Histones/metabolism , Transcription Factors/metabolism , Acetylation , Chromatin/metabolism , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/enzymology , Embryonic Stem Cells/metabolism , Genome , Histone Deacetylase Inhibitors , Histone Deacetylases/pharmacology , Retroelements
4.
Nat Chem Biol ; 16(6): 604-605, 2020 06.
Article in English | MEDLINE | ID: mdl-32300239

Subject(s)
DNA , Genomics , Animals , Deoxyadenosines
5.
Sci Rep ; 9(1): 18289, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797955

ABSTRACT

Formaldehyde (HCHO) is a simple and highly reactive human metabolite but its biochemistry is poorly defined. A limiting factor in HCHO research is lack of validated quantification methods for HCHO relevant to biological samples. We describe spectroscopic studies on a reported fluorescence-based HCHO detection method involving its reaction with ampicillin. The results validate the structure and fluorescence properties of the HCHO-ampicillin reaction product. However, the same adduct is observed after reaction of ampicillin with glyoxylate. Related fluorophores were formed with other biologically relevant carbonyl compounds. Overall, our studies suggest the ampicillin method is not reliable for selective detection and quantification of HCHO in biological samples.

6.
Nat Methods ; 16(5): 429-436, 2019 05.
Article in English | MEDLINE | ID: mdl-31011185

ABSTRACT

Replication of eukaryotic genomes is highly stochastic, making it difficult to determine the replication dynamics of individual molecules with existing methods. We report a sequencing method for the measurement of replication fork movement on single molecules by detecting nucleotide analog signal currents on extremely long nanopore traces (D-NAscent). Using this method, we detect 5-bromodeoxyuridine (BrdU) incorporated by Saccharomyces cerevisiae to reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a pulse-labeling period. Under conditions of limiting BrdU concentration, D-NAscent detects the differences in BrdU incorporation frequency across individual molecules to reveal the location of active replication origins, fork direction, termination sites, and fork pausing/stalling events. We used sequencing reads of 20-160 kilobases to generate a whole-genome single-molecule map of DNA replication dynamics and discover a class of low-frequency stochastic origins in budding yeast. The D-NAscent software is available at https://github.com/MBoemo/DNAscent.git .


Subject(s)
DNA Replication , Genome, Fungal , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Nanopores , Saccharomyces cerevisiae/genetics , Bromodeoxyuridine/metabolism , DNA, Fungal/genetics , Genome , Software
7.
PLoS Genet ; 14(10): e1007643, 2018 10.
Article in English | MEDLINE | ID: mdl-30335751

ABSTRACT

The Fanconi Anemia (FA) pathway is important for repairing interstrand crosslinks (ICLs) between the Watson-Crick strands of the DNA double helix. An initial and essential stage in the repair process is the detection of the ICL. Here, we report the identification of UHRF2, a paralogue of UHRF1, as an ICL sensor protein. UHRF2 is recruited to ICLs in the genome within seconds of their appearance. We show that UHRF2 cooperates with UHRF1, to ensure recruitment of FANCD2 to ICLs. A direct protein-protein interaction is formed between UHRF1 and UHRF2, and between either UHRF1 and UHRF2, and FANCD2. Importantly, we demonstrate that the essential monoubiquitination of FANCD2 is stimulated by UHRF1/UHRF2. The stimulation is mediating by a retention of FANCD2 on chromatin, allowing for its monoubiquitination by the FA core complex. Taken together, we uncover a mechanism of ICL sensing by UHRF2, leading to FANCD2 recruitment and retention at ICLs, in turn facilitating activation of FANCD2 by monoubiquitination.


Subject(s)
DNA Repair/physiology , Fanconi Anemia Complementation Group D2 Protein/physiology , Ubiquitin-Protein Ligases/physiology , Amino Acid Sequence , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/physiology , Cell Line , Cell Nucleus/metabolism , Chromatin/metabolism , DNA/metabolism , DNA Damage/physiology , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Protein Interaction Domains and Motifs , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...