Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Eng Des Sel ; 29(12): 563-572, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27737926

ABSTRACT

Targeted delivery of therapeutic payloads to specific tissues and cell types is an important component of modern pharmaceutical development. Antibodies or other scaffold proteins can provide the cellular address for delivering a covalently linked therapeutic via specific binding to cell-surface receptors. Optimization of the conjugation site on the targeting protein, linker chemistry and intracellular trafficking pathways can all influence the efficiency of delivery and potency of the drug candidate. In this study, we describe a comprehensive engineering experiment for an EGFR binding Centyrin, a highly stable fibronectin type III (FN3) domain, wherein all possible single-cysteine replacements were evaluated for expression, purification, conjugation efficiency, retention of target binding, biophysical properties and delivery of a cytotoxic small molecule payload. Overall, 26 of the 94 positions were identified as ideal for cysteine modification, conjugation and drug delivery. Conjugation-tolerant positions were mapped onto a crystal structure of the Centyrin, providing a structural context for interpretation of the mutagenesis experiment and providing a foundation for a Centyrin-targeted delivery platform.


Subject(s)
Drug Carriers/chemistry , Fibronectins/chemistry , Protein Engineering , Amino Acid Sequence , Cell Line, Tumor , Crystallography, X-Ray , Drug Carriers/metabolism , Drug Carriers/pharmacology , ErbB Receptors/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Fibronectins/pharmacology , Humans , Maleimides/chemistry , Models, Molecular , Protein Conformation, beta-Strand , Protein Domains
2.
Diabetes ; 57(7): 1926-34, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18426860

ABSTRACT

OBJECTIVE: We have developed a novel platform for display and delivery of bioactive peptides that links the biological properties of the peptide to the pharmacokinetic properties of an antibody. Peptides engineered in the MIMETIBODY platform have improved biochemical and biophysical properties that are quite distinct from those of Fc-fusion proteins. CNTO736 is a glucagon-like peptide 1 (GLP-1) receptor agonist engineered in our MIMETIBODY platform. It retains many activities of native GLP-1 yet has a significantly enhanced pharmacokinetic profile. Our goal was to develop a long-acting GLP-1 receptor agonist with sustained efficacy. RESEARCH DESIGN AND METHODS: In vitro and in vivo activity of CNTO736 was evaluated using a variety of rodent cell lines and diabetic animal models. RESULTS: Acute pharmacodynamic studies in diabetic rodents demonstrate that CNTO736 reduces fasting and postprandial glucose, decreases gastric emptying, and inhibits food intake in a GLP-1 receptor-specific manner. Reduction of food intake following CNTO736 dosing is coincident with detection of the molecule in the circumventricular organs of the brain and activation of c-fos in regions protected by the blood-brain barrier. Diabetic rodents dosed chronically with CNTO736 have lower fasting and postprandial glucose and reduced body weight. CONCLUSIONS: Taken together, our data demonstrate that CNTO736 produces a spectrum of GLP-1 receptor-dependent actions while exhibiting significantly improved pharmacokinetics relative to the native GLP-1 peptide.


Subject(s)
Adipose Tissue/metabolism , Glucose/metabolism , Lactoferrin/pharmacology , Protein Engineering/methods , Receptors, Glucagon/physiology , Transferrin/pharmacology , Adipose Tissue/drug effects , Amino Acid Sequence , Animal Feed , Animals , Cell Line , Glucagon-Like Peptide-1 Receptor , Homeostasis , Humans , Kidney , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Obesity/etiology , Obesity/physiopathology , Receptors, Glucagon/agonists , Receptors, Glucagon/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...