Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Toxicol Sci ; 154(1): 115-125, 2016 11.
Article in English | MEDLINE | ID: mdl-27605421

ABSTRACT

Extracellular microRNAs (miRNAs) represent a promising new source of toxicity biomarkers that are sensitive indicators of site of tissue injury. In order to establish reliable approaches for use in biomarker validation studies, the HESI technical committee on genomics initiated a multi-site study to assess sources of variance associated with quantitating levels of cardiac injury induced miRNAs in biofluids using RT-qPCR. Samples were generated at a central site using a model of acute cardiac injury induced in male Wistar rats by 0.5 mg/kg isoproterenol. Biofluid samples were sent to 11 sites for measurement of 3 cardiac enriched miRNAs (miR-1-3p, miR-208a-3p, and miR-499-5p) and 1 miRNA abundant in blood (miR-16-5p) or urine (miR-192-5p) by absolute quantification using calibration curves of synthetic miRNAs. The samples included serum and plasma prepared from blood collected at 4 h, urine collected from 6 to 24 h, and plasma prepared from blood collected at 24 h post subcutaneous injection. A 3 parameter logistic model was utilized to fit the calibration curve data and estimate levels of miRNAs in biofluid samples by inverse prediction. Most sites observed increased circulating levels of miR-1-3p and miR-208a-3p at 4 and 24 h after isoproterenol treatment, with no difference seen between serum and plasma. The biological differences in miRNA levels and sample type dominated as sources of variance, along with outlying performance by a few sites. The standard protocol established in this study was successfully implemented across multiple sites and provides a benchmark method for further improvements in quantitative assays for circulating miRNAs.


Subject(s)
Heart Injuries/metabolism , MicroRNAs/blood , MicroRNAs/urine , Animals , Biomarkers/blood , Biomarkers/urine , Heart Injuries/chemically induced , Isoproterenol/toxicity , Male , Plasma/chemistry , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Serum/chemistry
2.
Toxicol Appl Pharmacol ; 276(1): 73-81, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24534255

ABSTRACT

UNLABELLED: Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. CONCLUSION: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients.


Subject(s)
Fatty Liver/drug therapy , Lipid Metabolism/drug effects , Lipotropic Agents/pharmacology , Liver/drug effects , Peroxisome Proliferator-Activated Receptors/agonists , Cell Line , Constitutive Androstane Receptor , Drug Evaluation, Preclinical , Fatty Acids, Nonesterified/adverse effects , Fatty Liver/metabolism , Gene Expression Regulation/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Humans , Lipogenesis/drug effects , Liver/metabolism , Liver X Receptors , Non-alcoholic Fatty Liver Disease , Oleic Acid/adverse effects , Orphan Nuclear Receptors/antagonists & inhibitors , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Oxazoles/pharmacology , Oxidation-Reduction , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Triglycerides/metabolism
3.
Drug Metab Dispos ; 40(1): 151-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21994436

ABSTRACT

Interindividual variations in functions other than drug metabolism activity, remain poorly elucidated in human liver. In the present study, the whole transcriptome of several human hepatocyte populations and the differentiated human HepaRG cell line have been analyzed and compared, using oligonucleotide pangenomic microarrays. We show that, although the variation in the percentages of expressed genes did not exceed 14% among the primary human hepatocyte populations, huge interindividual differences in the transcript levels of many genes were observed. These genes were related to various functions; in addition to drug metabolism, they mainly concerned carbohydrate, amino acid, and lipid metabolism. HepaRG cells expressed from 81 to 92% of the genes active in human hepatocytes and, in addition, a specific gene subset mainly related to their transformed status, some chromosomal abnormalities, and the presence of primitive biliary epithelial cells. Of interest, a relationship was evidenced between abnormal basal expression levels of some target genes and their corresponding previously reported fold changes in one of four human hepatocyte populations treated with the hepatotoxic drug troglitazone and not with other nonhepatotoxic peroxisome proliferator-activated receptor agonists (PLoS One 6:e18816, 2011). Taken together, our results support the view that HepaRG cells express most of the genes active in primary human hepatocytes and show that expression of most human hepatic genes can quantitatively greatly vary among individuals, thereby contributing to explain the huge interindividual variability in susceptibility to drugs and other environmental factors.


Subject(s)
Gene Expression Profiling/methods , Genetic Variation/physiology , Hepatocytes/physiology , Cell Differentiation/physiology , Cell Line, Tumor , Humans
4.
PLoS One ; 6(4): e18816, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21533120

ABSTRACT

BACKGROUND: Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. METHODOLOGY/PRINCIPAL FINDINGS: Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. CONCLUSIONS/SIGNIFICANCE: This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby supporting the occurrence of idiosyncratic toxicity in some patients.


Subject(s)
Gene Expression Profiling , Hepatocytes/metabolism , PPAR alpha/agonists , PPAR gamma/agonists , Adenosine Triphosphate/metabolism , Adult , Blotting, Western , Cells, Cultured , Cluster Analysis , Humans , Polymerase Chain Reaction , Reactive Oxygen Species/metabolism
5.
Toxicol Appl Pharmacol ; 254(1): 18-31, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21515302

ABSTRACT

Species-differential toxic effects have been described with PPARα and PPARγ agonists between rodent and human liver. PPARα agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPARγ agonists (glitazones) and even dual PPARα/γ agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPARα agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes induced by PPARγ and dual PPARα/γ agonists. Here, we investigated transcriptomes of rat hepatocytes after 24h treatment with two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPARα targets were also modulated by both PPARγ and PPARα/γ agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPARα and PPARγ agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.


Subject(s)
Gene Expression Profiling , Hepatocytes/drug effects , PPAR alpha/agonists , PPAR gamma/agonists , Alkanesulfonates/pharmacology , Animals , Chromans/pharmacology , Genes/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Hepatocytes/metabolism , Humans , Male , Oligonucleotide Array Sequence Analysis , Oxazoles/pharmacology , Phenylpropionates/pharmacology , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Rosiglitazone , Thiazolidinediones/pharmacology , Troglitazone
6.
PPAR Res ; 2010: 325183, 2010.
Article in English | MEDLINE | ID: mdl-20981297

ABSTRACT

Thiazolidinediones are a class of Peroxisome Proliferator Activated Receptor γ (PPARγ) agonists that reduce insulin resistance in type 2 diabetic patients. Although no detectable hepatic toxicity has been evidenced in animal studies during preclinical trials, these molecules have nevertheless induced hepatic adverse effects in some treated patients. The mechanism(s) of hepatotoxicity remains equivocal. Several studies have been conducted using PCR analysis and microarray technology to identify possible target genes and here we review the data obtained from various in vivo and in vitro experimental models. Although PPARγ is expressed at a much lower level in liver than in adipose tissue, PPARγ agonists exert various PPARγ-dependent effects in liver in addition to PPARγ-independent effects. Differences in effects are dependent on the choice of agonist and experimental conditions in rodent animal studies and in rodent and human liver cell cultures. These effects are much more pronounced in obese and diabetic liver. Moreover, our own recent studies have shown major interindividual variability in the response of primary human hepatocyte populations to troglitazone treatment, supporting the occurrence of hepatotoxicity in only some individuals.

7.
Toxicol Sci ; 110(2): 341-52, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19465456

ABSTRACT

The genotoxicity testing battery is highly sensitive for detection of chemical carcinogens. However, it features a low specificity and provides only limited mechanistic information required for risk assessment of positive findings. This is especially important in case of positive findings in the in vitro chromosome damage assays, because chromosome damage may be also induced secondarily to cell death. An increasing body of evidence indicates that toxicogenomic analysis of cellular stress responses provides an insight into mechanisms of action of genotoxicants. To evaluate the utility of such a toxicogenomic analysis we evaluated gene expression profiles of TK6 cells treated with four model genotoxic agents using a targeted high density real-time PCR approach in a multilaboratory project coordinated by the Health and Environmental Sciences Institute Committee on the Application of Genomics in Mechanism-based Risk Assessment. We show that this gene profiling technology produced reproducible data across laboratories allowing us to conclude that expression analysis of a relevant gene set is capable of distinguishing compounds that cause DNA adducts or double strand breaks from those that interfere with mitotic spindle function or that cause chromosome damage as a consequence of cytotoxicity. Furthermore, our data suggest that the gene expression profiles at early time points are most likely to provide information relevant to mechanisms of genotoxic damage and that larger gene expression arrays will likely provide richer information for differentiating molecular mechanisms of action of genotoxicants. Although more compounds need to be tested to identify a robust molecular signature, this study confirms the potential of toxicogenomic analysis for investigation of genotoxic mechanisms.


Subject(s)
DNA Damage , Gene Expression Profiling , Gene Expression Regulation/drug effects , Laboratories , Mutagenicity Tests/methods , Mutagens/toxicity , Polymerase Chain Reaction , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromosome Aberrations/chemically induced , Cisplatin/toxicity , Cluster Analysis , DNA Adducts/metabolism , DNA Breaks, Double-Stranded , Dose-Response Relationship, Drug , Etoposide/toxicity , Gene Expression Profiling/standards , Humans , Laboratories/standards , Mutagenicity Tests/standards , Observer Variation , Paclitaxel/toxicity , Polymerase Chain Reaction/standards , Reproducibility of Results , Risk Assessment , Sodium Chloride/toxicity , Spindle Apparatus/drug effects , Time Factors
8.
Toxicol In Vitro ; 23(3): 466-75, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19159669

ABSTRACT

The use of in vitro human liver cell models is an attractive approach in toxicogenomic studies designed to analyze gene expression changes induced by a toxic chemical. However, in such studies, reliability, reproducibility and interlaboratory concordance of microarrays, as well as the choice of the most suitable cell model, remain a matter of debate. This work was aimed at evaluating the robustness of microarray technologies and the suitability of the highly differentiated human HepaRG cell line in the investigation of gene expression changes induced by a toxic compound in human liver. The influence of various experimental conditions including cell cultures grown at different test sites, different generations of microarrays, RNA analysis platforms and softwares, was tested on gene expression profiles induced by a 20h treatment with an 8mM concentration of phenobarbital as the toxic compound. As many as 1099 genes (p-value<0.01 and 1.5-fold-change), representing 74% and 30% of the signature genes detected with Agilent 22 and 44K pangenomic microarrays, respectively, were shown to be modulated in common in six independently performed experiments. The most modulated genes included both those known to be regulated by phenobarbital, such as cytochromes P450 and membrane transporters, and those involved in oxidative stress, inflammation and apoptosis, typifying a toxic insult. These data provide strong support for the use of a toxicogenomic approach for the in vitro prediction of chemical toxicity, and for the choice of human HepaRG cells as a promising model system for human hepatotoxicity testing.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Hepatocytes/drug effects , Hypnotics and Sedatives/toxicity , Phenobarbital/toxicity , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Hepatocytes/metabolism , Humans , Hypnotics and Sedatives/classification , Liver/drug effects , Microarray Analysis , Phenobarbital/classification , Principal Component Analysis , RNA, Messenger/metabolism , Reproducibility of Results , Toxicity Tests
9.
Toxicol Appl Pharmacol ; 234(3): 345-60, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19084549

ABSTRACT

Phenobarbital (PB) induces or represses a wide spectrum of genes in rodent liver. Much less is known about its effects in human liver. We used pangenomic cDNA microarrays to analyze concentration- and time-dependent gene expression profile changes induced by PB in the well-differentiated human HepaRG cell line. Changes in gene expression profiles clustered at specific concentration ranges and treatment times. The number of correctly annotated genes significantly modulated by at least three different PB concentration ranges (spanning 0.5 to 3.2 mM) at 20 h exposure amounted to 77 and 128 genes (p< or =0.01) at 2- and 1.8-fold filter changes, respectively. At low concentrations (0.5 and 1 mM), PB-responsive genes included the well-recognized CAR- and PXR-dependent responsive cytochromes P450 (CYP2B6, CYP3A4), sulfotransferase 2A1 and plasma transporters (ABCB1, ABCC2), as well as a number of genes critically involved in various metabolic pathways, including lipid (CYP4A11, CYP4F3), vitamin D (CYP24A1) and bile (CYP7A1 and CYP8B1) metabolism. At concentrations of 3.2 mM or higher after 20 h, and especially 48 h, increased cytotoxic effects were associated with disregulation of numerous genes related to oxidative stress, DNA repair and apoptosis. Primary human hepatocyte cultures were also exposed to 1 and 3.2 mM PB for 20 h and the changes were comparable to those found in HepaRG cells treated under the same conditions. Taken altogether, our data provide further evidence that HepaRG cells closely resemble primary human hepatocytes and provide new information on the effects of PB in human liver. These data also emphasize the importance of investigating dose- and time-dependent effects of chemicals when using toxicogenomic approaches.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Profiling , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hepatocytes/drug effects , Liver Neoplasms/genetics , Phenobarbital/pharmacology , Adenosine Triphosphate/metabolism , Carcinoma, Hepatocellular/enzymology , Cell Line, Tumor , Cluster Analysis , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/genetics , Dose-Response Relationship, Drug , Gene Expression Profiling/methods , Hepatocytes/enzymology , Humans , Liver Neoplasms/enzymology , Multidrug Resistance-Associated Protein 2 , Oligonucleotide Array Sequence Analysis , Phenobarbital/toxicity , Principal Component Analysis , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
10.
Biochem Biophys Res Commun ; 309(4): 1005-10, 2003 Oct 03.
Article in English | MEDLINE | ID: mdl-13679074

ABSTRACT

Human thiopurine S-methyltransferase (TPMT) is an enzyme responsible for the detoxification of widely used thiopurine drugs such as azathioprine (Aza). Its activity is inversely related to the risk of developing severe hematopoietic toxicity in certain patients treated with standard doses of thiopurines. DNA samples from four leucopenic patients treated with Aza were screened by PCR-SSCP analysis for mutations in the 10 exons of the TPMT gene. Four missense mutations comprising two novel mutations, A83T (TPMT*13, Glu(28)Val) and C374T (TPMT*12, Ser(125)Leu), and two previously described mutations, G430C (TPMT*10, Gly(144)Arg) and T681G (TPMT*7, His(227)Gln) were identified. Using a recombinant yeast expression system, kinetic parameters (K(m) and V(max)) of 6-thioguanine S-methylation of the four TPMT variants were determined and compared to those obtained with wild-type TPMT. This functional analysis suggests that these rare allelic variants are defective TPMT alleles. The His(227)Gln variant retained only 10% of the intrinsic clearance value (V(max)/K(m) ratio) of the wild-type enzyme. The Ser(125)Leu and Gly(144)Arg variants were associated with a significant decrease in intrinsic clearance values, retaining about 30% of the wild-type enzyme, whereas the Glu(28)Val variant produced a more modest decrease (57% of the wild-type enzyme). The data suggest that the sporadic contribution of the rare Glu(28)Val, Ser(125)Leu, Gly(144)Arg, and His(227)Gln variants may account for the occurrence of altered metabolism of TPMT substrates. These findings improve our knowledge of the genetic basis of interindividual variability in TPMT activity and would enhance the efficiency of genotyping methods to predict patients at risk of inadequate responses to thiopurine therapy.


Subject(s)
Methyltransferases/metabolism , Base Sequence , Blotting, Western , DNA Primers , Humans , Methyltransferases/chemistry , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...