Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nutr Bull ; 48(4): 458-481, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37986635

ABSTRACT

There have been reports from teachers of pupils in the United Kingdom arriving at school hungry. Poor nutritional intake during childhood can increase the risk of developing both short- and long-term health problems. Breakfast consumption has been associated with several outcomes including better diet quality and healthier weight status. Nevertheless, skipping breakfast is a frequent behaviour in young people, particularly adolescents, and those from lower socio-economic groups, who are less likely to meet dietary recommendations and nutritional targets. The aim of this narrative review is to explore the contribution of breakfast consumption at home or at school and the impact of breakfast skipping on nutrient intakes in school-aged children (aged 4-18 years), and their effect on weight and cardiometabolic health. We will also summarise evidence for a link with cognitive function and educational attainment. A broadly positive effect of breakfast intake on diet quality, weight status and school-related outcomes was found in the literature, although inconsistencies in findings and methodological limitations within the evidence base are notable. Further research is warranted to better understand impact of breakfast intake and school breakfast provision on longer-term learning, educational attainment and health outcomes. This also needs to consider the cost benefit, type of breakfast and any unintended consequences such as encouraging multiple breakfasts. Breakfast consumption could improve the nutritional intakes of the most vulnerable young people and may help to address inequalities in educational outcomes at least in the short term.


Subject(s)
Breakfast , Feeding Behavior , Adolescent , Humans , Child , Diet , Eating , Educational Status
3.
Nutr Bull ; 48(2): 278-295, 2023 06.
Article in English | MEDLINE | ID: mdl-37164357

ABSTRACT

The 'ultra-processed food' (UPF) concept, with classification of foods by 'level of processing' rather than nutrient profiles, and its relationship with health outcomes, is currently a topic of debate among academics and increasingly referred to in the media. The British Nutrition Foundation convened a virtual roundtable on 6th July 2022 to gather views on the use of the term (and current definitions of) UPF for public health messaging, seeking to establish areas of consensus and disagreement and identify topics for further research. A small group of invited expert stakeholders attended, including representatives from academia, policy, behavioural science, communications, health, food science, retail and consumer interests. Participants' discussions clustered into cogent themes which included: problems with the use of definitions for UPF, the lack of causal evidence and defined mechanisms linking processing per se with poor health outcomes, and advice that may result in consumer confusion. There was agreement that many foods classified as UPF are high in fat, sugars and/or salt and public health messages should continue to focus on reducing these in the diet since it is unclear whether reported associations between high intakes of UPF and poor health reflect poorer dietary patterns (defined by nutrient intakes), and nutrient-health relationships are well established. Examples of misalignment were also highlighted (i.e. some foods are classified as UPF yet recommended in food-based dietary guidelines [featuring in healthy dietary patterns]). This raises challenges for consumer communication around UPF. Concern was also expressed about potential unintended consequences, particularly for vulnerable groups, where advice to avoid UPF could create stigma and guilt due to lack of time or facilities to prepare and cook meals from scratch. It could also impact on nutrient intakes, as some foods classified as UPF represent more affordable sources of important nutrients (e.g. packaged wholemeal bread). Discordance between the concept of UPF and current strategies to improve public health, such as reformulation, was also discussed. The group concluded that the use of the concept of UPF in UK policy (e.g. dietary guidelines) would be unhelpful at present. Overall, participants felt that it was more important to focus on providing practical advice around selection of healthier processed foods and making healthier foods more accessible rather than promoting the avoidance of UPF. The latter may act to demonise all foods classified as UPF by current definitions, including some affordable nutrient-dense foods.


Subject(s)
Food Handling , Food, Processed , Humans , Fast Foods/adverse effects , Diet , Food Insecurity
4.
Nutr Bull ; 47(4): 538-562, 2022 12.
Article in English | MEDLINE | ID: mdl-36299246

ABSTRACT

Cooking at home has experienced a decline in many countries since the mid-20th century. As rates of obesity have increased, there has been an emphasis on more frequent home cooking, including its incorporation into several food-based dietary guidelines around the world as a strategy to improve dietary quality. With the recent trend towards the adoption of diets richer in plant-based foods, many consumers cooking at home may now be cooking plant foods such as vegetables, potatoes and pulses more often. It is, therefore, timely to explore the impact that different home cooking methods have on the range of nutrients (e.g. vitamin C and folate) and bioactive phytochemicals (e.g. carotenoids and polyphenols) that such plant foods provide, and this paper will explore this and whether advice can be tailored to minimise such losses. The impact of cooking on nutritional quality can be both desirable and/or undesirable and can vary according to the cooking method and the nutrient or phytochemical of interest. Cooking methods that expose plant foods to high temperatures and/or water for long periods of time (e.g. boiling) may be the most detrimental to nutrient content, whereas other cooking methods such as steaming or microwaving may help to retain nutrients, particularly those that are water-soluble. Dishes that use cooking liquids may retain nutrients that would have been lost through leaching. It may be helpful to provide the public with more information about better methods to prepare and cook plant foods to minimise any nutrient losses. However, for some nutrients/phytochemicals the insufficient and inconsistent research findings make clear messages around the optimal cooking method difficult, and factors such as bioaccessibility rather than just quantity may also be important to consider.


Subject(s)
Solanum tuberosum , Vegetables , Vegetables/chemistry , Solanum tuberosum/chemistry , Cooking , Nutritive Value , Phytochemicals/analysis , Vitamins , Water
5.
Br J Nutr ; : 1-9, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36089804

ABSTRACT

COVID-19 has further exacerbated trends of widening health inequalities in the UK. Shockingly, the number of years of life lived in general good health differs by over 18 years between the most and least deprived areas of England. Poor diets and obesity are established major risk factors for chronic cardiometabolic diseases and cancer, as well as severe COVID-19. For doctors to provide the best care to their patients, there is an urgent need to improve nutrition education in undergraduate medical school training.With this imperative, the Association for Nutrition established an Interprofessional Working Group on Medical Education (AfN IPG) to develop a new, modern undergraduate nutrition curriculum for medical doctors. The AfN IPG brought together expertise from nutrition, dietetic and medical professionals, representing the National Health Service (NHS), royal colleges, medical schools and universities, government public health departments, learned societies, medical students, and nutrition educators. The curriculum was developed with the key objective of being implementable through integration with the current undergraduate training of medical doctors.Through an iterative and transparent consultative process, thirteen key nutritional competencies, to be achieved through mastery of eleven graduation fundamentals, were established. The curriculum to facilitate the achievement of these key competencies is divided into eight topic areas, each underpinned by a learning objective statement and teaching points detailing the knowledge and skills development required. The teaching points can be achieved through clinical teaching and a combination of facilitated learning activities and practical skill acquisition. Therefore, the nutrition curriculum enables mastery of these nutritional competencies in a way that will complement and strengthen medical students' achievement of the General Medical Council (GMC) Outcome for Graduates.As nutrition is an integrative science, the AfN IPG recommends that the curriculum is incorporated into initial undergraduate medical studies before specialist training. This will enable our future doctors to recognise how nutrition is related to multiple aspects of their training, from physiological systems to patient-centred care, and acquire a broad, inclusive understanding of health and disease. In addition, it will facilitate medical schools to embed nutrition learning opportunities within the core medical training, without the need to add in a large number of new components to an already crowded programme or with additional burden for teaching staff.The undergraduate nutrition curriculum for medical doctors is designed to support medical schools to create future doctors who will understand and recognise the role of nutrition in health. Moreover, it will equip frontline staff to feel empowered to raise nutrition-related issues with their patients as a fundamental part of enhanced care and to appropriately refer on for nutrition support with a registered associate nutritionist/registered nutritionist (ANutr/RNutr) or registered dietitian (RD) where this is likely to be beneficial.

6.
Nutr Rev ; 81(1): 26-54, 2022 12 06.
Article in English | MEDLINE | ID: mdl-35912883

ABSTRACT

CONTEXT: Considering the accumulation of recent studies investigating the health effects of walnut consumption, both including and beyond cardiovascular health effects, a systematic review of this literature to investigate the strength of the evidence is warranted. OBJECTIVE: To investigate associations between walnut consumption and outcomes with public health relevance (specifically all-cause mortality, type 2 diabetes, CVD, metabolic syndrome, obesity, cancer, neurological and mental health, musculoskeletal, gastrointestinal, and maternal disorders) and the effect on associated disease risk markers, reported in studies published from 2017 to present. DATA SOURCES: MEDLINE, FSTA, CENTRAL, and Scopus were searched from 1 January 2017 to 5 May 2021. DATA EXTRACTION: Human studies (cohort studies and RCTs) ≥3 weeks in duration comparing consumption of walnuts (whole, pieces, or 100% butter) to a control and measuring associations with relevant public health outcomes and disease risk markers were assessed. Key study characteristics were extracted independently by 2 investigators using a standardized table. The quality of the studies was assessed using the Cochrane Risk-of-Bias tool 2.0 and the Newcastle-Ottawa Scale. DATA ANALYSIS: Only 1 RCT was considered to be at low risk of bias for any of its outcomes. The cohort studies were considered to be of moderate or high quality. The results were synthesized using vote counting, based on the direction of effect. Thirty-three articles, 23 describing RCTs (walnut dose ∼10-99 g/day, 1,948 subjects) and 10 describing cohort studies (∼675,928 subjects), were included. Vote counting could be performed for the blood lipids, cardiovascular function, inflammation- and hemostatic-related factors, markers of glucose metabolism, and body weight and composition outcome groupings. The results are presented in effect direction plots. With respect to blood lipids, results from 8/8 RCTs favoured walnuts, in accordance with associations with a reduced risk of CVD suggested by cohort studies; results from 6/6 RCTs favoured control with respect to body weight and composition, although most of these effects were small. This was contrary to cohort study results suggesting small benefits of walnut consumption on body weight. There was no overall consistent direction of effect for cardiovascular function, markers of glucose metabolism, or inflammation- and hemostatic-related factors. CONCLUSIONS: Evidence published since 2017 is consistent with previous research suggesting that walnut consumption improves lipid profiles and is associated with reduced CVD risk. Evidence is accumulating in other areas, such as cognitive health, although more research is needed to draw firm conclusions. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD4202122.


Subject(s)
Diabetes Mellitus, Type 2 , Juglans , Humans , Cohort Studies , Public Health , Randomized Controlled Trials as Topic , Body Weight , Glucose , Outcome Assessment, Health Care
7.
BMJ Nutr Prev Health ; 5(2): 208-216, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36619326

ABSTRACT

COVID-19 has further exacerbated trends of widening health inequalities in the UK. Shockingly, the number of years of life lived in general good health differs by over 18 years between the most and least deprived areas of England. Poor diets and obesity are established major risk factors for chronic cardiometabolic diseases and cancer, as well as severe COVID-19. For doctors to provide the best care to their patients, there is an urgent need to improve nutrition education in undergraduate medical school training. With this imperative, the Association for Nutrition established the Inter-Professional Working Group on Medical Education (AfN IPG) to develop a new, modern undergraduate nutrition curriculum for medical doctors. The AfN IPG brought together expertise from nutrition, dietetic and medical professionals, representing the National Health Service, royal colleges, medical schools and universities, government public health departments, learned societies, medical students and nutrition educators. The curriculum was developed with the key objective of being implementable through integration with the current undergraduate training of medical doctors. Through an iterative and transparent consultative process, 13 key nutritional competencies, to be achieved through mastery of 11 graduation fundamentals, were established. The curriculum to facilitate the achievement of these key competencies is divided into eight topic areas, each underpinned by a learning objective statement and teaching points detailing the knowledge and skills development required. The teaching points can be achieved through clinical teaching and a combination of facilitated learning activities and practical skills acquisition. Therefore, the nutrition curriculum enables mastery of these nutritional competencies in a way that will complement and strengthen medical students' achievement of the General Medical Council Outcomes for Graduates. As nutrition is an integrative science, the AfN IPG recommends the curriculum is incorporated into initial undergraduate medical studies before specialist training. This will enable our future doctors to recognise how nutrition is related to multiple aspects of their training, from physiological systems to patient-centred care, and acquire a broad, inclusive understanding of health and disease. In addition, it will facilitate medical schools to embed nutrition learning opportunities within the core medical training, without the need to add in a large number of new components to an already crowded programme or with additional burden to teaching staff. The undergraduate nutrition curriculum for medical doctors is designed to support medical schools to create future doctors who will understand and recognise the role of nutrition in health. Moreover, it will equip front-line staff to feel empowered to raise nutrition-related issues with their patients as a fundamental part of enhanced care and to appropriately refer on for nutrition support with a registered nutritionist (RNutr)/registered associate nutritionist (ANutr) or a registered dietitian (RD) where this is likely to be beneficial.

SELECTION OF CITATIONS
SEARCH DETAIL
...