Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Food Microbiol ; 341: 109050, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33498008

ABSTRACT

Dromedary camel milk is generally considered a valuable and marketable commodity but its production suffers from poor hygienic conditions that result in low microbiological quality and the presence of various pathogens. The objective of the present study was to provide a detailed report of the bacterial species level composition of Moroccan raw camel milk samples that can serve as a starting point for the selection of starter cultures to facilitate a change in manufacturing practices to an improved and safer production system. The composition of the bacterial community in four freshly collected raw camel milk samples was analyzed by performing a large-scale isolation campaign combined with 16S rRNA gene amplicon sequencing. A total of 806 isolates were obtained from four raw camel milk samples using ten combinations of growth media and incubation conditions. Subsequent isolate dereplication using MALDI-TOF mass spectrometry and identification of representative isolates through sequence analysis of protein encoding and 16S rRNA genes revealed the presence of established and novel dairy lactic acid bacteria, as well as bacteria that are considered indicators of poor hygienic conditions and psychrotrophic spoilage organisms. The large numbers of Lactococcus and Enterococcus isolates obtained present an interesting resource for starter culture selection.


Subject(s)
Bacteria/isolation & purification , Camelus/physiology , Enterococcus/isolation & purification , Milk/microbiology , Raw Foods/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Enterococcus/genetics , Food Microbiology , Lactobacillales/genetics , Lactobacillales/isolation & purification , Morocco , RNA, Ribosomal, 16S/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Antonie Van Leeuwenhoek ; 108(5): 1257-65, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26346480

ABSTRACT

Four lactic acid bacteria isolates obtained from fresh dromedary camel milk produced in Dakhla, a city in southern Morocco, were characterised in order to determine their taxonomic position. The four isolates had highly similar MALDI-TOF MS and RAPD fingerprints and identical 16S rRNA gene sequences. Comparative sequence analysis revealed that the 16S rRNA gene sequence of the four isolates was most similar to that of Enterococcus sulfureus ATCC 49903(T) and Enterococcus italicus DSM 15952(T) (99.33 and 98.59% similarity, respectively). However, sequence analysis of the phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) genes revealed that the taxon represented by strain LMG 28766(T) was well separated from E. sulfureus LMG 13084(T) and E. italicus LMG 22039(T), which was further confirmed by DNA-DNA hybridization values that were clearly below the species demarcation threshold. The novel taxon was easily differentiated from its nearest neighbour species through sequence analysis of protein encoding genes, MALDI-TOF mass spectrometry and multiple biochemical tests, but had a similar percentage G+C content of about 39%. We therefore propose to formally classify these isolates as Enterococcus bulliens sp. nov., with LMG 28766(T) (=CCMM B1177(T)) as the type strain.


Subject(s)
Enterococcus/classification , Enterococcus/metabolism , Food Microbiology , Lactic Acid/biosynthesis , Milk/microbiology , Animals , Base Composition , Camelus , DNA, Bacterial , Enterococcus/chemistry , Enterococcus/genetics , Enterococcus/isolation & purification , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
Food Microbiol ; 49: 23-32, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25846912

ABSTRACT

The microbiota involved in lambic beer fermentations in an industrial brewery in West-Flanders, Belgium, was determined through culture-dependent and culture-independent techniques. More than 1300 bacterial and yeast isolates from 13 samples collected during a one-year fermentation process were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry followed by sequence analysis of rRNA and various protein-encoding genes. The bacterial and yeast communities of the same samples were further analyzed using denaturing gradient gel electrophoresis of PCR-amplified V3 regions of the 16S rRNA genes and D1/D2 regions of the 26S rRNA genes, respectively. In contrast to traditional lambic beer fermentations, there was no Enterobacteriaceae phase and a larger variety of acetic acid bacteria were found in industrial lambic beer fermentations. Like in traditional lambic beer fermentations, Saccharomyces cerevisiae, Saccharomyces pastorianus, Dekkera bruxellensis and Pediococcus damnosus were the microorganisms responsible for the main fermentation and maturation phases. These microorganisms originated most probably from the wood of the casks and were considered as the core microbiota of lambic beer fermentations.


Subject(s)
Bacteria/isolation & purification , Beer/microbiology , Microbiota , Yeasts/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Belgium , Biodiversity , Fermentation , Industrial Microbiology , Molecular Sequence Data , Pediococcus/genetics , Pediococcus/isolation & purification , Pediococcus/metabolism , Phylogeny , Yeasts/classification , Yeasts/genetics , Yeasts/metabolism
4.
Food Microbiol ; 47: 1-11, 2015 May.
Article in English | MEDLINE | ID: mdl-25583332

ABSTRACT

Gueuze beers are prepared by mixing young and old lambic beers and are bottle-refermented spontaneously for aging. The present study analyzed the microbiota and metabolites present in gueuze beers that were aged between a few months and up to 17 years. Yeasts were cultivated from all beers sampled, but bacteria could not be grown from beers older than 5 years. Lactic acid and ethyl lactate concentrations increased steadily during aging, whereas ethanol concentrations remained constant. The concentrations of isoamyl acetate and ethyl decanoate decreased during the aging process. Hence, ethyl lactate and ethyl decanoate can be considered as positive and negative gueuze beer-aging metabolite biomarkers, respectively. Nevertheless, considerable bottle-to-bottle variation in the metabolite profiles was found, which hindered the generalization of the effects seen during the aging of the gueuze beers examined, but which illustrated the unique character of the lambic beers. The present results further indicate that gueuze beers are preferably aged for less than 10 years.


Subject(s)
Bacteria/isolation & purification , Beer/analysis , Beer/microbiology , Microbiota , Yeasts/isolation & purification , Bacteria/classification , Decanoates , Ethanol/analysis , Fermentation , Lactates/analysis , Lactic Acid/analysis , Pentanols/analysis , Yeasts/classification
5.
Int J Food Microbiol ; 185: 41-50, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-24929682

ABSTRACT

Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry.


Subject(s)
Bacteria/isolation & purification , Beer/microbiology , Food Microbiology/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Molecular Sequence Data
6.
PLoS One ; 9(4): e95384, 2014.
Article in English | MEDLINE | ID: mdl-24748344

ABSTRACT

Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration.


Subject(s)
Beer , Fermentation , Microbiota , Belgium , Culture Media , Denaturing Gradient Gel Electrophoresis , Molecular Sequence Data , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
Int J Syst Evol Microbiol ; 64(Pt 7): 2407-2415, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24763601

ABSTRACT

Five acetic acid bacteria isolates, awK9_3, awK9_4 ( = LMG 27543), awK9_5 ( = LMG 28092), awK9_6 and awK9_9, obtained during a study of micro-organisms present in traditionally produced kefir, were grouped on the basis of their MALDI-TOF MS profile with LMG 1530 and LMG 1531(T), two strains currently classified as members of the genus Acetobacter. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences as well as on concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB indicated that these isolates were representatives of a single novel species together with LMG 1530 and LMG 1531(T) in the genus Acetobacter, with Acetobacter aceti, Acetobacter nitrogenifigens, Acetobacter oeni and Acetobacter estunensis as nearest phylogenetic neighbours. Pairwise similarity of 16S rRNA gene sequences between LMG 1531(T) and the type strains of the above-mentioned species were 99.7%, 99.1%, 98.4% and 98.2%, respectively. DNA-DNA hybridizations confirmed that status, while amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) data indicated that LMG 1531(T), LMG 1530, LMG 27543 and LMG 28092 represent at least two different strains of the novel species. The major fatty acid of LMG 1531(T) and LMG 27543 was C18 : 1ω7c. The major ubiquinone present was Q-9 and the DNA G+C contents of LMG 1531(T) and LMG 27543 were 58.3 and 56.7 mol%, respectively. The strains were able to grow on D-fructose and D-sorbitol as a single carbon source. They were also able to grow on yeast extract with 30% D-glucose and on standard medium with pH 3.6 or containing 1% NaCl. They had a weak ability to produce acid from d-arabinose. These features enabled their differentiation from their nearest phylogenetic neighbours. The name Acetobacter sicerae sp. nov. is proposed with LMG 1531(T) ( = NCIMB 8941(T)) as the type strain.


Subject(s)
Acetobacter/classification , Alcoholic Beverages/microbiology , Cultured Milk Products/microbiology , Phylogeny , Acetobacter/genetics , Acetobacter/isolation & purification , Amplified Fragment Length Polymorphism Analysis , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA , Ubiquinone/chemistry
8.
Int J Syst Evol Microbiol ; 64(Pt 4): 1134-1141, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24368694

ABSTRACT

Three strains, LMG 27748(T), LMG 27749 and LMG 27882 with identical MALDI-TOF mass spectra were isolated from samples taken from the brewery environment. Analysis of the 16S rRNA gene sequence of strain LMG 27748(T) revealed that the taxon it represents was closely related to type strains of the species Gluconobacter albidus (100 % sequence similarity), Gluconobacter kondonii (99.9 %), Gluconobacter sphaericus (99.9 %) and Gluconobacter kanchanaburiensis (99.5 %). DNA-DNA hybridization experiments on the type strains of these species revealed moderate DNA relatedness values (39-65 %). The three strains used d-fructose, d-sorbitol, meso-erythritol, glycerol, l-sorbose, ethanol (weakly), sucrose and raffinose as a sole carbon source for growth (weak growth on the latter two carbon sources was obtained for strains LMG 27748(T) and LMG 27882). The strains were unable to grow on glucose-yeast extract medium at 37 °C. They produced acid from meso-erythritol and sucrose, but not from raffinose. d-Gluconic acid, 2-keto-d-gluconic acid and 5-keto-d-gluconic acid were produced from d-glucose, but not 2,5-diketo-d-gluconic acid. These genotypic and phenotypic characteristics distinguish strains LMG 27748(T), LMG 27749 and LMG 27882 from species of the genus Gluconobacter with validly published names and, therefore, we propose classifying them formally as representatives of a novel species, Gluconobacter cerevisiae sp. nov., with LMG 27748(T) ( = DSM 27644(T)) as the type strain.


Subject(s)
Beer/microbiology , Gluconobacter/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fermentation , Genes, Bacterial , Gluconates/chemistry , Gluconobacter/genetics , Gluconobacter/isolation & purification , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA
9.
Int J Syst Evol Microbiol ; 64(Pt 4): 1083-1089, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24363299

ABSTRACT

An acetic acid bacterium, strain LMG 27439(T), was isolated from fermenting lambic beer. The cells were Gram-stain-negative, motile rods, catalase-positive and oxidase-negative. Analysis of the 16S rRNA gene sequence revealed the strain was closely related to Acetobacter okinawensis (99.7 % 16S rRNA gene sequence similarity with the type strain of this species), A. ghanensis (99.6 %), A. syzygii (99.6 %), A. fabarum (99.4 %) and A. lovaniensis (99.2 %). DNA-DNA hybridization with the type strains of these species revealed moderate DNA-DNA hybridization values (31-45 %). Strain LMG 27439(T) was unable to grow on glycerol or methanol as the sole carbon source, on yeast extract with 10 % ethanol or on glucose-yeast extract medium at 37 °C. It did not produce acid from l-arabinose, d-galactose or d-mannose, nor did it produce 2-keto-d-gluconic acid, 5-keto-d-gluconic acid or 2,5-diketo-d-gluconic acid from d-glucose. It did not grow on ammonium as the sole nitrogen source and ethanol as the sole carbon source. These genotypic and phenotypic data distinguished strain LMG 27439(T) from established species of the genus Acetobacter, and therefore we propose this strain represents a novel species of the genus Acetobacter. The name Acetobacter lambici sp. nov. is proposed, with LMG 27439(T) ( = DSM 27328(T)) as the type strain.


Subject(s)
Acetobacter/classification , Beer/microbiology , Fermentation , Phylogeny , Acetobacter/genetics , Acetobacter/isolation & purification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Gluconates/chemistry , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
Appl Environ Microbiol ; 80(4): 1528-38, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24362425

ABSTRACT

The effect of the growth medium used on the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra generated and its consequences for species and strain level differentiation of acetic acid bacteria (AAB) were determined by using a set of 25 strains. The strains were grown on five different culture media that yielded a total of more than 600 mass spectra, including technical and biological replicates. The results demonstrate that the culture medium can have a profound effect on the mass spectra of AAB as observed in the presence and varying signal intensities of peak classes, in particular when culture media do not sustain optimal growth. The observed growth medium effects do not disturb species level differentiation but strongly affect the potential for strain level differentiation. The data prove that a well-constructed and robust MALDI-TOF mass spectrometry identification database should comprise mass spectra of multiple reference strains per species grown on different culture media to facilitate species and strain level differentiation.


Subject(s)
Acetobacteraceae/chemistry , Acetobacteraceae/classification , Bacteriological Techniques/methods , Culture Media/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Acetobacteraceae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...