Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 278(2): F227-37, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10662727

ABSTRACT

LLC-PK(1)-FBPase(+) cells, which are a gluconeogenic substrain of porcine renal LLC-PK(1) cells, exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase (PDG) activity. On adaptation to acidic medium (pH 6.9, 9 mM HCO(-)(3)), LLC-PK(1)-FBPase(+) cells also exhibit a greater increase in ammonia production and respond with an increase in assayable PDG activity. The changes in PDG mRNA levels were examined by using confluent cells grown on plastic dishes or on permeable membrane inserts. The latter condition increased the state of differentiation of the LLC-PK(1)-FBPase(+) cells. The levels of the primary porcine PDG mRNAs were analyzed by using probes that are specific for the 5.0-kb PDG mRNA (p2400) or that react equally with both the 4.5- and 5.0-kb PDG mRNAs (p930 and r1500). In confluent dish- and filter-grown LLC-PK(1)-FBPase(+) cells, the predominant 4.5-kb PDG mRNA is increased threefold after 18 h in acidic media. However, in filter-grown epithelia, which sustain an imposed pH and HCO(-)(3) gradient, this adaptive increase is observed only when acidic medium is applied to both the apical and the basolateral sides of the epithelia. Half-life experiments established that induction of the 4. 5-kb PDG mRNA was due to its stabilization. An identical pattern of adaptive increases was observed for the cytosolic PEPCK mRNA. In contrast, no adaptive changes were observed in the levels of the 5. 0-kb PDG mRNA in either cell culture system. Furthermore, cultures were incubated in low-potassium (0.7 mM) media for 24-72 h to decrease intracellular pH while maintaining normal extracellular pH. LLC-PK(1)-FBPase(+) cells again responded with increased rates of ammonia production and increased levels of the 4.5-kb PDG and PEPCK mRNAs, suggesting that an intracellular acidosis is the initiator of this adaptive response. Because all of the observed responses closely mimic those characterized in vivo, the LLC-PK(1)-FBPase(+) cells represent a valuable tissue culture model to study the molecular mechanisms that regulate renal gene expression in response to changes in acid-base balance.


Subject(s)
Acid-Base Equilibrium/physiology , Acidosis/metabolism , Glutaminase/metabolism , LLC-PK1 Cells/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , RNA, Messenger/metabolism , Acid-Base Equilibrium/drug effects , Animals , Gluconeogenesis/drug effects , Gluconeogenesis/physiology , Glutaminase/genetics , LLC-PK1 Cells/drug effects , Phosphoenolpyruvate Carboxykinase (ATP)/drug effects , Potassium/administration & dosage , Rats , Swine
2.
Am J Physiol ; 275(3): F361-9, 1998 09.
Article in English | MEDLINE | ID: mdl-9729508

ABSTRACT

The addition of phorbol 12-myristate 13-acetate (PMA) to renal LLC-PK1-F+ cells caused a rapid decrease in the level of phosphoenolpyruvate carboxykinase (PCK) mRNA and reversed the stimulatory effects of exposure to acidic medium (pH 6.9, 10 mM HCO-3) or cAMP. In contrast, prolonged treatment with PMA increased the levels of PCK mRNA. The two effects correlated with the membrane translocation and downregulation of the alpha-isozyme of protein kinase C and were blocked by pretreatment with specific inhibitors of protein kinase C. The rapid decrease in PCK mRNA caused by PMA occurred with a half-life (t1/2 = 1 h) that is significantly faster than that measured during recovery from acid medium or following inhibition of transcription (t1/2 = 4 h). The effect of PMA was reversed by staurosporine, which apparently acts by inhibiting a signaling pathway other than protein kinase C. Staurosporine had no effect on the half-life of the PCK mRNA, but it stimulated the activity of a chloramphenicol acetyltransferase gene that was driven by the initial 490 base pairs of the PCK promoter and transiently transfected into LLC-PK1-F+ cells. This effect was additive to that of cAMP, and neither stimulation was reversed by PMA. The stimulatory effect of staurosporine was mapped to the cAMP response element (CRE-1) and P3(II) element of the PCK promoter. The data indicate that, in LLC-PK1-F+ cells, activation of protein kinase C decreases the stability of the PCK mRNA, whereas transcription of the PCK gene may be suppressed by a kinase that is inhibited by staurosporine.


Subject(s)
Gene Expression/drug effects , Kidney/enzymology , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Staurosporine/pharmacology , Tetradecanoylphorbol Acetate/pharmacology , Animals , Chloramphenicol O-Acetyltransferase/genetics , Cyclic AMP/pharmacology , Enzyme Inhibitors/pharmacology , Epithelial Cells , Half-Life , Hydrogen-Ion Concentration , Kinetics , LLC-PK1 Cells , Phosphoenolpyruvate Carboxykinase (GTP)/antagonists & inhibitors , Promoter Regions, Genetic , RNA, Messenger/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...