Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 263(Pt 1): 130237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368980

ABSTRACT

Breast cancer has become the most diagnosed cancer type, endangering the health of women. Patients with breast resection are likely to suffer serious physical and mental trauma. Therefore, breast reconstruction becomes an important means of postoperative patient rehabilitation. Polyvinyl alcohol hydrogel has great potential in adipose tissue engineering for breast reconstruction. However, its application is limited because of the lack of bioactive factors and poor structural stability. In this study, we prepared biodegradable polylactic acid-glycolic acid copolymer/polycaprolactone/gelatin (PPG) nanofibers. We then combined them with polyvinyl alcohol/collagen to create tissue engineering scaffolds to overcome limitations. We found that PPG fibers formed amide bonds with polyvinyl alcohol/collagen scaffolds. After chemical crosslinking, the number of amide bonds increased, leading to a significant improvement in their mechanical properties and thermal stability. The results showed that compared with pure PVA scaffolds, the maximum compressive stress of the scaffold doped with 0.9 g nanofibers increased by 500 %, and the stress loss rate decreased by 40.6 % after 10 cycles of compression. The presence of natural macromolecular gelatin and the changes in the pore structure caused by nanofibers provide cells with richer and more three-dimensional adsorption sites, allowing them to grow in three dimensions on the scaffold. So, the hydrogel scaffold by reinforcing polyvinyl alcohol hydrogel with PPG fibers is a promising breast reconstruction method.


Subject(s)
Gelatin , Nanofibers , Humans , Female , Gelatin/chemistry , Tissue Engineering/methods , Polyvinyl Alcohol/chemistry , Nanofibers/chemistry , Collagen/chemistry , Tissue Scaffolds/chemistry , Polyesters/chemistry , Amides
2.
Polymers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080717

ABSTRACT

Studies addressing electroconductive composites based on rubber have attracted great interest for many engineering applications. To contribute to obtaining useful materials with reproducible behavior, this study focused on understanding the mechanism of conductivity changes during mechanical deformation for rubber composites based on styrene-butadiene rubber (SBR) or ethylene-propylene-diene terpolymer (EPDM) vulcanized for various times. The composites were characterized by static electrical conductivity, tensile testing, dynamic mechanical thermal analysis (DMTA), and crosslink density measurements. The tensile strength and Young's modulus were found to increase significantly with rising vulcanization time. Higher static conductivity values of the composites were observed with the increase in vulcanization time. The most important aspect of this investigation consisted in the electrical current measurement online with recording the stress-strain curves, revealing the details of the uniaxial cyclic deformation effect on changes in the structure of conductive pathways indirectly. The electrical conductivity during five runs of repeated cyclic mechanical deformations for SBR composites increased permanently, although not linearly, whereas EPDM composites showed a slight increase or at least a nearly constant current, indicating healing of minor defects in the conductive pathways or the formation of new conductive pathways.

3.
Polymers (Basel) ; 14(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35215658

ABSTRACT

Due to its slow degradation rate, polycaprolactone (PCL) is frequently used in biomedical applications. This study deals with the development of antibacterial nanofibers based on PCL and halloysite nanotubes (HNTs). Thanks to a combination with HNTs, the prepared nanofibers can be used as low-cost nanocontainers for the encapsulation of a wide variety of substances, including drugs, enzymes, and DNA. In our work, HNTs were used as a nanocarrier for erythromycin (ERY) as a model antibacterial active compound with a wide range of antibacterial activity. Nanofibers based on PCL and HNT/ERY were prepared by electrospinning. The antibacterial activity was evaluated as a sterile zone of inhibition around the PCL nanofibers containing 7.0 wt.% HNT/ERY. The morphology was observed with SEM and TEM. The efficiency of HNT/ERY loading was evaluated with thermogravimetric analysis. It was found that the nanofibers exhibited outstanding antibacterial properties and inhibited both Gram- (Escherichia coli) and Gram+ (Staphylococcus aureus) bacteria. Moreover, a significant enhancement of mechanical properties was achieved. The potential uses of antibacterial, environmentally friendly, nontoxic, biodegradable PCL/HNT/ERY nanofiber materials are mainly in tissue engineering, wound healing, the prevention of bacterial infections, and other biomedical applications.

4.
Polymers (Basel) ; 13(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34771374

ABSTRACT

Conductive polymer composites (CPC) from renewable resources exhibit many interesting characteristics due to their biodegradability and conductivity changes under mechanical, thermal, chemical, or electrical stress. This study is focused on investigating the physical properties of electroconductive thermoplastic starch (TPS)-based composites and changes in electroconductive paths during cyclic deformation. TPS-based composites filled with various carbon black (CB) contents were prepared through melt processing. The electrical conductivity and physicochemical properties of TPS-CB composites, including mechanical properties and rheological behavior, were evaluated. With increasing CB content, the tensile strength and Young's modulus were found to increase substantially. We found a percolation threshold for the CB loading of approximately 5.5 wt% based on the rheology and electrical conductivity. To observe the changing structure of the conductive CB paths during cyclic deformation, both the electrical conductivity and mechanical properties were recorded in parallel using online measurements. Moreover, the instant electrical conductivity measured online during mechanical deformation of the materials was taken as the parameter indirectly describing the structure of the conductive CB network. The electrical conductivity was found to increase during five runs of repeated cyclic mechanical deformations to constant deformation below strain at break, indicating good recovery of conductive paths and their new formation.

5.
Photodiagnosis Photodyn Ther ; 35: 102455, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34311091

ABSTRACT

Inhabitation of various types of bacteria on different surfaces causes vital health problems worldwide. In this work, a wound dressing defeating bacterial infection had been fabricated. The antibacterial effect of polycaprolactone and hydrophobic carbon quantum dots (hCQDs) based nanocomposite has been presented. The nanocomposite was fabricated both via solvent casting and electrospinning method. Nanocomposites with and without hCQDs had been investigated. A detailed study on their morphology and surface properties were performed by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. Prepared nanocomposites had been evaluated by the contact angle, UV-Vis spectroscopy, electron paramagnetic resonance spectroscopy, and antibacterial activity. It was found that nanocomposites were able to produce singlet oxygen upon blue light irradiation at 470 nm, and they were effective in the eradication of Gram positive (Staphylococcus aureus, Listeria monocytogenes) and Gram negative (Escherichia coli, Klebsiella pneumoniae) bacteria.


Subject(s)
Nanocomposites , Photochemotherapy , Quantum Dots , Anti-Bacterial Agents/pharmacology , Carbon , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Polyesters , Solvents
6.
Int J Biol Macromol ; 183: 880-889, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33961880

ABSTRACT

Fused deposition modelling (FDM) is a process of additive manufacturing allowing creating of highly precise complex three-dimensional objects for a large range of applications. The principle of FDM is an extrusion of the molten filament and gradual deposition of layers and their solidification. Potential applications in pharmaceutical and medical fields require the development of biodegradable and biocompatible thermoplastics for the processing of filaments. In this work, the potential of production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) filaments for FDM was investigated in respect to its thermal stability. Copolymer P(3HB-co-4HB) was biosynthesised by Cupriavidus malaysiensis. Rheological and mechanical properties of the copolymer were modified by the addition of plasticizers or blending with poly(lactic acid). Thermal stability of mixtures was studied employing thermogravimetric analysis and rheological analyses by monitoring the time-dependent changes in the complex viscosity of melt samples. The plasticization of P(3HB-co-4HB) slightly hindered its thermal degradation but the best stabilization effect was found in case of the copolymer blended with poly(lactic acid). Overall, rheological, thermal and mechanical properties demonstrated that the plasticized P(3HB-co-4HB) is a potential candidate of biodegradable polymer for FDM processes.


Subject(s)
Cupriavidus/metabolism , Hydroxybutyrates/chemistry , Polyesters/chemistry , Molecular Structure , Molecular Weight , Plasticizers/chemistry , Rheology , Temperature
7.
J Photochem Photobiol B ; 211: 112012, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32919175

ABSTRACT

Here we present a new effective antibacterial material suitable for a coating, e.g., surface treatment of textiles, which is also time and financially undemanding. The most important role is played by hydrophobic carbon quantum dots, as a new type of photosensitizer, produced by carbonization of different carbon precursors, which are incorporated by swelling from solution into various polymer matrices in the form of thin films, in particular polyurethanes, which are currently commercially used for industrial surface treatment of textiles. The role of hydrophobic carbon quantum dots is to work as photosensitizers upon irradiation and produce reactive oxygen species, namely singlet oxygen, which is already known as the most effective radical for elimination different kinds of bacteria on the surface or in close proximity to such modified material. Therefore, we have mainly studied the effect of hydrophobic carbon quantum dots on Staphylococcus aureus and the cytotoxicity tests, which are essential for the safe handling of such material. Also, the production of singlet oxygen by several methods (electron paramagnetic spectroscopy, time-resolved near-infrared spectroscopy), surface structures (atomic force microscopy and contact angle measurement), and the effect of radiation on polymer matrices were studied. The prepared material is easily modulated by end-user requirements.


Subject(s)
Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Photosensitizing Agents/chemistry , Smart Materials/chemistry , Animals , Biofilms , Carbon/chemistry , Cell Survival/drug effects , Hydrophobic and Hydrophilic Interactions , Mice , Quantum Dots/chemistry , Reactive Oxygen Species/metabolism , Singlet Oxygen/chemistry , Staphylococcus aureus , Surface Properties
8.
Beilstein J Nanotechnol ; 11: 167-179, 2020.
Article in English | MEDLINE | ID: mdl-32082959

ABSTRACT

High-density polyethylene (HDPE)-based nanocomposites incorporating three different types of graphene nanoplatelets (GnPs) were fabricated to investigate the size effects of GnPs in terms of both lateral size and thickness on the morphological, thermal, electrical, and mechanical properties. The results show that the inclusion of GnPs enhance the thermal, electrical, and mechanical properties of HDPE-based nanocomposites regardless of GnP size. Nevertheless, the most significant enhancement of the thermal and electrical conductivities and the lowest electrical percolation threshold were achieved with GnPs of a larger lateral size. This could have been attributed to the fact that the GnPs of larger lateral size exhibited a better dispersion in HDPE and formed conductive pathways easily observable in scanning electron microscope (SEM) images. Our results show that the lateral size of GnPs was a more regulating factor for the above-mentioned nanocomposite properties compared to their thickness. For a given lateral size, thinner GnPs showed significantly higher electrical conductivity and a lower percolation threshold than thicker ones. On the other hand, in terms of thermal conductivity, a remarkable amount of enhancement was observed only above a certain filler concentration. The results demonstrate that GnPs with smaller lateral size and larger thickness lead to lower enhancement of the samples' mechanical properties due to poorer dispersion compared to the others. In addition, the size of the GnPs had no considerable effect on the melting and crystallization properties of the HDPE/GnP nanocomposites.

9.
Polymers (Basel) ; 11(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370311

ABSTRACT

The electrically conductive, transparent, and flexible self-standing thin nanocomposite films based on copolyamide matrix (coPA:Vestamelt X1010) modified with 2D Ti3C2Tx (MXene) nanosheets were prepared by casting and their electrical, mechanical and optical properties and then, were investigated. The percolation threshold of the MXene filler within the coPA matrix was found to be 0.05 vol. %, and the highest determined electrical conductivity was 1.4 × 10-2 S·cm-1 for the composite filled with 5 wt. % (1.8 vol. %) of MXene. The electrical conductivity of the as-prepared MXene was 9.1 S·cm-1, and the electrical conductivity of the MAX phase (the precursor for MXene preparation) was 172 S·cm-1. The transparency of the prepared composite films exceeded 75%, even for samples containing 5 wt. % of MXene, as confirmed by UV spectroscopy. The dynamic mechanical analysis confirmed the improved mechanical properties, such as the storage modulus, which improved with the increasing MXene content. Moreover, all the composite films were very flexible and did not break under repeated twisting. The combination of the relatively high electrical conductivity of the composites filled with low filler content, an appropriate transparency, and good mechanical properties make these materials promising for applications in flexible electronics.

10.
Cancers (Basel) ; 11(6)2019 May 29.
Article in English | MEDLINE | ID: mdl-31146494

ABSTRACT

Diagnosis of oncological diseases remains at the forefront of current medical research. Carbonic Anhydrase IX (CA IX) is a cell surface hypoxia-inducible enzyme functionally involved in adaptation to acidosis that is expressed in aggressive tumors; hence, it can be used as a tumor biomarker. Herein, we propose a nanoscale graphene oxide (GO) platform functionalized with magnetic nanoparticles and a monoclonal antibody specific to the CA IX marker. The GO platforms were prepared by a modified Hummers and Offeman method from exfoliated graphite after several centrifugation and ultrasonication cycles. The magnetic nanoparticles were prepared by a chemical precipitation method and subsequently modified. Basic characterization of GO, such as the degree of oxidation, nanoparticle size and exfoliation, were determined by physical and chemical analysis, including X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and atomic force microscopy (AFM). In addition, the size and properties of the poly-L-lysine-modified magnetic nanoparticles were characterized. The antibody specific to CA IX was linked via an amidic bond to the poly-L-lysine modified magnetic nanoparticles, which were conjugated to GO platform again via an amidic bond. The prepared GO-based platform with magnetic nanoparticles combined with a biosensing antibody element was used for a hypoxic cancer cell targeting study based on immunofluorescence.

11.
Neuropharmacology ; 146: 95-108, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30471296

ABSTRACT

We investigated the therapeutic capacity of nano-sized graphene sheets, called graphene quantum dots (GQD), in experimental autoimmune encephalomyelitis (EAE), an animal model of immune-mediated central nervous system (CNS) damage. Intraperitoneally administered GQD (10 mg/kg/day) accumulated in the lymph node and CNS cells of Dark Agouti rats in which EAE was induced by immunization with spinal cord homogenate in complete Freund's adjuvant. GQD significantly reduced clinical signs of EAE when applied throughout the course of the disease (day 0-32), while the protection was less pronounced if the treatment was limited to the induction (day 0-7 post-immunization) or effector (from day 8 onwards) phase of the disease. GQD treatment diminished immune infiltration, demyelination, axonal damage, and apoptotic death in the CNS of EAE animals. GQD also reduced the numbers of interferon-γ-expressing T helper (Th)1 cells, as well as the expression of Th1 transcription factor T-bet and proinflammatory cytokines tumor necrosis factor, interleukin-1, and granulocyte-macrophage colony-stimulating factor in the lymph nodes and CNS immune infitrates. The protective effect of GQD in EAE was associated with the activation of p38 and p42/44 mitogen-activated protein kinases (MAPK) and Akt in the lymph nodes and/or CNS. Finally, GQD protected oligodendrocytes and neurons from T cell-mediated damage in the in vitro conditions. Collectively, these data demonstrate the ability of GQD to gain access to both immune and CNS cells during neuroinflammation, and to alleviate immune-mediated CNS damage by modulating MAPK/Akt signaling and encephalitogenic Th1 immune response.


Subject(s)
Encephalomyelitis/immunology , Encephalomyelitis/therapy , Graphite/therapeutic use , Quantum Dots/therapeutic use , Animals , Central Nervous System/immunology , Central Nervous System/metabolism , Cytokines/biosynthesis , Cytokines/drug effects , Demyelinating Diseases , Encephalomyelitis, Autoimmune, Experimental , Inflammation , Injections, Intraperitoneal , Lymph Nodes , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Spinal Cord
12.
Photodiagnosis Photodyn Ther ; 24: 150-152, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30278280

ABSTRACT

Antimicrobial photodynamic therapy uses a nontoxic photosensitizer with the assistance of harmless visible light to activate the photosensitizer. Consequently, the excited state of the photosensitizer interacts with molecular oxygen to produce reactive oxygen species, which have the antimicrobial effect. In this study, we evaluated the effect of photodynamic therapy on Vero cells infected with rickettsia using methylene blue as a photosensitizer along with red light. A significant reduction (by 96%) in the number of viable Rickettsia slovaca was determined by quantitative RT-PCR 48 h after the treatment with methylene blue followed by 30 min of red light excitation. A statistically significant reduction of R. slovaca was also recorded with pretreatment (by 99%). To the best of our knowledge, this result is the first one in the literature to confirm the effectiveness of photodynamic therapy for the elimination of R. slovaca and to suggest this technique as a good supportive treatment for rickettsial infections.


Subject(s)
Methylene Blue/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Rickettsia/drug effects
13.
Ticks Tick Borne Dis ; 9(5): 1207-1211, 2018 07.
Article in English | MEDLINE | ID: mdl-29748120

ABSTRACT

Ticks are important vectors of pathogens affecting humans and animals worldwide. They do not only carry pathogens but diverse commensal and symbiotic microorganisms are also present in ticks. A molecular screening for tick-borne pathogens and endosymbionts was carried out in Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis inermis questing ticks collected in Slovakia. The presence of Rickettsia spp., Coxiella burnetii, Coxiella-like and Francisella-like microorganisms was evaluated by PCR in 605 individuals and by randomly sequencing 66 samples. Four species of rickettsiae (R. raoultii, R. slovaca, R. helvetica and R. monacensis) were identified and reported with an overall prevalence range between 0.4 and 50.3% (±8.0) depending on tick species, sex and locality. Partial sequencing of the gltA gene of 5 chosen samples in H. inermis showed 99% identity with Candidatus Rickettsia hungarica. The total prevalence of C. burnetii in ticks was 2.2 ±â€¯1.7%; bacteria were confirmed in I. ricinus and D. reticulatus ticks. The sequences from 2 D. reticulatus males and 1 I. ricinus female ticks were compared to GenBank submissions and a 99.8% match was obtained with the pathogenic C. burnetii. Coxiella-like endosymbionts were registered in all three species of ticks from all studied sites with an average prevalence of 32.7 ±â€¯3.7%. A phylogenetic analysis of this Coxiella sp. showed that it does not group with the pathogenic C. burnetii. The prevalence of Francisella-like microorganisms in questing ticks was 47.9 ±â€¯3.9%, however H. inermis (n = 108) were not infested. Obtained sequences were 98% identical with previously identified Francisella-like endosymbionts in D. reticulatus and I. ricinus. Coxiella-like and Francisella-like microorganisms were identified for the first time in Slovakia, they might be considered as a non-pathogenic endosymbiont of I. ricinus, D. reticulatus and H. inermis, and future investigations could aim to assess their role in these ticks. However, this work provided further data and broadened our knowledge on bacterial pathogens and endosymbionts present in ticks in Slovakia to help understanding co-infestations, combined treatments and public health issues linked to tick bites.


Subject(s)
Arachnid Vectors/microbiology , Coxiella burnetii/isolation & purification , Francisella/isolation & purification , Ixodidae/microbiology , Rickettsia/isolation & purification , Animals , Bacterial Infections/epidemiology , Bacterial Infections/transmission , Coxiella/cytology , Coxiella/genetics , Coxiella/isolation & purification , Coxiella/pathogenicity , Coxiella burnetii/genetics , Coxiella burnetii/pathogenicity , DNA, Bacterial/genetics , Dermacentor/microbiology , Female , Francisella/classification , Francisella/genetics , Francisella/pathogenicity , Ixodes/microbiology , Male , Phylogeny , Public Health , Rickettsia/genetics , Rickettsia/pathogenicity , Slovakia/epidemiology , Symbiosis
14.
Polymers (Basel) ; 10(10)2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30960984

ABSTRACT

This study serves to combine two approaches into one single step, to achieve a significant improvement of the light-induced actuation capabilities. Graphene oxide (GO) is an inert material, from the electrical and thermal conductivity point of view, and is incompatible with the usually-used poly(dimethylsiloxane) (PDMS) matrix. During surface-modification by surface-initiated atom transfer radical polymerization, the GO was transformed into a conducting and compatible material with the PDMS showing enormous light-induced actuation capability. The GO surface-modification with poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains was confirmed by transmission electron microscopy and thermogravimetric analysis, with an on-line monitoring of gasses using FTIR. The improved compatibility was elucidated using contact angle and dielectric properties measurements. The PHEMATMS shell was investigated using gel permeation chromatography and nuclear magnetic resonance. The improved electric conductivity was measured using the four-point probe method and by Raman spectroscopy. The very important mechanical properties were elucidated using dynamic mechanical analysis, and with the help of thermo-mechanic analysis for the light-induced actuation. The excellent actuation capabilities observed, with changes in the length of around 0.8% at 10% pre-strain, are very promising from the point of view of applications.

15.
Biomaterials ; 146: 13-28, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28892752

ABSTRACT

Graphene quantum dots (GQD) are atom-thick nanodimensional carbon sheets with excellent physico-chemical and biological properties, making them attractive for application in theranostics. However, their immunoregulatory properties are insufficiently investigated, especially in human primary immune cells. We found that non-toxic doses of GQD inhibit the production of proinflammatory and T helper (Th)1 cytokines, and augment the production of anti-inflammatory and Th2 cytokines by human peripheral blood mononuclear cells. While unable to affect T cells directly, GQD impaired the differentiation and functions of monocyte-derived dendritic cells (DC), lowering their capacity to stimulate T cell proliferation, development of Th1 and Th17 cells, and T-cell mediated cytotoxicity. Additionally, GQD-treated DC potentiated Th2 polarization, and induced suppressive CD4+CD25highFoxp3+ regulatory T cells. After internalization in a dynamin-independent, cholesterol-dependent manner, GQD lowered the production of reactive oxygen species and nuclear translocation of NF-κB in DC. The activity of mammalian target of rapamycin (mTOR) was reduced by GQD, which correlated with the increase in transcription of autophagy genes and autophagic flux in DC. Genetic suppression of autophagy impaired the pro-tolerogenic effects of GQD on DC. Our results suggest that GQD-triggered autophagy promotes tolerogenic functions in monocyte-derived DC, which could be beneficial in inflammatory T-cell mediated pathologies, but also harmful in GQD-based anti-cancer therapy.


Subject(s)
Dendritic Cells/cytology , Dendritic Cells/drug effects , Graphite/chemistry , Graphite/pharmacology , Quantum Dots/chemistry , Autophagy/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cytokines/metabolism , Flow Cytometry , Humans , Immunoblotting , Real-Time Polymerase Chain Reaction , T-Lymphocytes, Regulatory/drug effects
16.
J Colloid Interface Sci ; 500: 30-43, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28395161

ABSTRACT

Electrochemically exfoliated graphene is functionalized graphene with potential application in biomedicine. Two most relevant biological features of this material are its electrical conductivity and excellent water dispersibility. In this study we have tried to establish the correlation between graphene structure and its antibacterial properties. The exfoliation process was performed in a two electrode-highly oriented pyrolytic graphite electrochemical cell. Solution of ammonium persulfate was used as an electrolyte. Exfoliated graphene sheets were dispersed in aqueous media and characterized by atomic force microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X photoelectron spectroscopy, X-ray diffraction, electron paramagnetic resonance, zeta potential, contact angle measurements and surface energy. Antibacterial assays have shown lack of the significant antibacterial activity. Major effect on bacteria was slight change of bacteria morphology. Membrane remained intact despite significant change of chemical content of membrane components.

17.
Nanotechnology ; 28(14): 145601, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28206980

ABSTRACT

We report on an ultrafast plasma-based graphene oxide reduction method superior to conventional vacuum thermal annealing and/or chemical reduction. The method is based on the effect of non-equilibrium atmospheric-pressure plasma generated by the diffuse coplanar surface barrier discharge in proximity of the graphene oxide layer. As the reduction time is in the order of seconds, the presented method is applicable to the large-scale production of reduced graphene oxide layers. The short reduction times are achieved by the high-volume power density of plasma, which is of the order of 100 W cm-3. Monolayers of graphene oxide on silicon substrate were prepared by a modified Langmuir-Schaefer method and the efficient and rapid reduction by methane and/or hydrogen plasma was demonstrated. The best results were obtained for the graphene oxide reduction in hydrogen plasma, as verified by x-ray photoelectron spectroscopy and Raman spectroscopy.

18.
Macromol Biosci ; 4(6): 601-9, 2004 Jun 25.
Article in English | MEDLINE | ID: mdl-15468254

ABSTRACT

Elasticity of various poly(hydroxybutyrate) (PHB) molecules of regular and irregular conformational structure was examined by the molecular mechanics (MM) calculations. Force - distance functions and the Young's moduli E were computed by stretching of PHB molecules. Unwinding of the 2(1) helical conformation H is characterized at small deformations by the Young's modulus E = 1.8 GPa. The H form is transformed on stretching into the highly extended twisted form E, similar to the beta-structure observed earlier by X-ray fiber diffraction. The computations revealed that in contrast to paraffins, the planar all-trans structure of undeformed PHB is bent. Hence, a PHB molecule attains the maximum contour length in highly straightened, but slightly twisted conformations. A dependence of the single-chain moduli of regular and disordered conformations on the chain extension ratio x was found. The computed data were used to analyze elastic response of tie (bridging) molecules in the interlamellar (IL) region of a semi-crystalline PHB. A modification of the chain length distribution function of tie molecules tau(N) due to secondary crystallization of PHB was conjectured. The resulting narrow distribution tau(N) comprises the taut tie molecules of higher chain moduli prone to overstressing. The molecular model outlined is in line with the macroscopically observed increase in the modulus and brittleness of PHB with storage time.


Subject(s)
Hydroxybutyrates/chemistry , Materials Testing , Polyesters/chemistry , Elasticity , Molecular Conformation , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...