Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 171(2): 315-327, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26446862

ABSTRACT

Providing cattle a more bioavailable zinc (Zn) source prior to administering a beta adrenergic agonist (ßAA) may enhance the metabolic pool of primary nutrients that will influence the magnitude of the ßAA response. Calf-fed Holstein steers were supplemented with a Zn methionine supplement (ZnMet; ZINPRO(®); Zinpro Corporation, Eden Prairie, MN) for 115 ± 5 days prior to harvest along with zilpaterol hydrochloride (ZH; Zilmax(®); Merck Animal Health, Summit, NJ) for the last 20 days with a 3-day withdrawal to evaluate the effects on growth and carcass performance together with gene and protein expression of skeletal muscle, adipose tissue, and fatty acid composition of polar and neutral lipid depots. Steers (n = 1296; initial weight = 468.5 ± 0.5 kg) were sorted by weight, blocked by harvest date, and randomly assigned to pens (n = 12) and treatments: control (90 ppm Zn from ZnSO4) and ZnMet (Control plus 720 mg Zn from ZnMet/hd/d). There were no differences (P > 0.05) in growth performance or carcass characteristics. The ZnMet-fed cattle had reduced (P < 0.05) abundance of myosin heavy chain (MHC)-IIX, ß1-adrenergic receptor (ßAR), peroxisome proliferator-activated receptor gamma, and stearoyl-CoA desaturase mRNA in skeletal muscle tissue. The ZnMet cattle had greater (P < 0.05) abundance of MHC-II protein, increased MHC-IIA and IIX cross-sectional areas (P < 0.05), an increased percentage of MHC-I fibers (P < 0.05), and a decreased percentage of MHC-IIX fibers (P < 0.05). The combination of ZnMet and ZH had positive biological effects on musculoskeletal tissue; however, these molecular effects were not significant enough to impact overall feedlot and carcass performance.


Subject(s)
Animal Feed , Dietary Supplements , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Methionine/analogs & derivatives , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Organometallic Compounds/administration & dosage , Organometallic Compounds/pharmacology , Animals , Cattle , Male , Methionine/administration & dosage , Methionine/pharmacology , Muscle, Skeletal/chemistry , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-1/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
2.
J Anim Sci ; 93(9): 4532-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26440352

ABSTRACT

Feeding zilpaterol hydrochloride (ZH) with ruminally protected AA was evaluated in a small-pen feeding trial. Crossbred steers ( = 180; initial BW = 366 kg) were blocked by weight and then randomly assigned to treatments (45 pens; 9 pens/treatment). Treatment groups consisted of no ZH and no AA (Cont-), ZH and no AA (Cont+), ZH and a ruminally protected lysine supplement (Lys), ZH and a ruminally protected methionine supplement (Met), and ZH and ruminally protected lysine and methionine (Lys+Met). Zilpaterol hydrochloride (8.3 mg/kg DM) was fed for the last 20 d of the finishing period with a 3-d withdrawal period. Lysine and Met were top dressed daily for the 134-d feeding trial to provide 12 or 4 g·hd·d, respectively, to the small intestine. Carcass characteristics, striploins, and prerigor muscle samples were collected following harvest at a commercial facility. Steaks from each steer were aged for 7, 14, 21, and 28 d, and Warner-Bratzler shear force (WBSF) was determined as an indicator of tenderness. Prerigor muscle samples were used for immunohistological analysis. Cattle treated with Met and Lys+Met had increased final BW ( < 0.3) and ADG ( < 0.05) compared to Cont- and Cont+. Supplementation of Lys, Met, and Lys+Met improved G:F ( < 0.05) compared to Cont- during the ZH feeding period (d 111 to 134) as well as the entire feeding period ( < 0.05). Zilpaterol hydrochloride increased carcass ADG ( < 0.05) when compared to non-ZH-fed steers. Methionine and Lys+Met treatments had heavier HCW ( < 0.02) than that of Cont-. Yield grade was decreased ( < 0.04) for Cont+ steers compared to steers treated with Lys, Lys+Met, and Cont-. Tenderness was reduced ( < 0.05) with ZH regardless of AA supplementation. Lysine, Met, Lys+Met, and Cont+ had less tender steaks ( < 0.05) throughout all aging groups compared to Cont-. Steaks from Lys-treated steers were less tender ( < 0.05) than those of Cont+ during the 7- and 14-d aging periods. Nuclei density was the greatest with Cont- cattle compared to all other treatments suggesting a dilution effect of the nuclei in the larger muscle fibers with ZH feeding. Supplementation of Met in conjunction with ZH feeding increased ADG and HCW although this may lead to decreased tenderness even after aging for 28 d. These findings indicated that steers fed ZH may require additional AA absorbed from the small intestine to maximize performance.


Subject(s)
Body Composition/drug effects , Cattle/physiology , Muscle Fibers, Skeletal/drug effects , Trimethylsilyl Compounds/pharmacology , Weight Gain/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Dietary Supplements , Lysine , Methionine
3.
J Anim Sci ; 90(10): 3515-26, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22851238

ABSTRACT

Urea kinetics were measured in 2 experiments, with treatments designed to change protein deposition by the animal. Our hypothesis was that increased protein deposition by cattle (Bos taurus) would reduce urea production and recycling to the gastrointestinal tract. Urea kinetics were measured by continuous intravenous infusion of (15)N(15)N-urea followed by measurement of enrichment in urinary urea at plateau. In Exp. 1, 6 steers (139 kg) were maintained in a model in which leucine was the most limiting AA. Treatments were arranged as a 2 × 3 factorial and were provided to steers in a 6 × 6 Latin square design. Leucine treatments included 0 or 4 g/d of abomasally supplemented L-leucine, and energy treatments included control, abomasal glucose infusion (382 g DM/d), or ruminal VFA infusion (150 g/d of acetic acid, 150 g/d of propionic acid, and 50 g/d of butyric acid). Leucine supplementation increased (P < 0.01) N retention, and energy supplementation tended to increase (P = 0.09) N retention without differences between glucose and VFA supplements (P = 0.86). Energy supplementation did not strikingly improve the efficiency of leucine utilization. Although both leucine and energy supplementation reduced urinary urea excretion (P ≤ 0.02), treatments did not affect urea production (P ≥ 0.34) or urea recycling to the gut (P ≥ 0.30). The magnitude of change in protein deposition may have been too small to significantly affect urea kinetics. In Exp. 2, 6 steers (168 kg) were maintained in a model wherein methionine was the most limiting AA. Steers were placed in 2 concurrent 3 × 3 Latin squares. Steers in one square were implanted with 24 mg of estradiol and 120 mg trenbolone acetate, and steers in the other square were not implanted. Treatments in each square were 0, 3, or 10 g/d of L-methionine. Implantation numerically improved N retention (P = 0.13) and reduced urea production rate (P = 0.03), urinary urea excretion (P < 0.01), and urea recycling to the gastrointestinal tract (P = 0.14). Effects of methionine were similar to implantation, but smaller in magnitude. When protein deposition by the body is increased markedly, ruminally available N in the diet may need to be increased to offset reductions in urea recycling.


Subject(s)
Cattle/physiology , Leucine/metabolism , Methionine/metabolism , Nitrogen/metabolism , Urea/metabolism , Abomasum/metabolism , Anabolic Agents/pharmacology , Animals , Cattle/growth & development , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Energy Intake , Estradiol/pharmacology , Estrogens/pharmacology , Fatty Acids, Volatile/metabolism , Glucose/metabolism , Kinetics , Leucine/blood , Male , Nitrogen/blood , Rumen/physiology , Trenbolone Acetate/pharmacology , Urea/blood
4.
J Dairy Sci ; 94(10): 4962-7, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21943747

ABSTRACT

Responses to pharmacological doses of niacin, an agonist for GPR109A (niacin receptor), were different in cattle than in humans and rodents. Thus, the tissue distribution of GPR109A was investigated in cattle. Samples of tail head fat, back fat, perirenal fat, longissimus muscle, and liver were analyzed for abundance of GPR109A mRNA by quantitative real-time reverse transcription-PCR and for abundance of GPR109A protein by Western blotting. Niacin receptor transcript and protein were detected in all tissues analyzed. The mRNA for GPR109A was more abundant in liver than in the other tissues sampled (GPR109A:RPS9 mRNA abundance = 0.56 in liver compared with 0.06 in longissimus muscle, 0.15 in kidney fat, 0.11 in back fat, 0.23 in tail head fat; standard error of the mean = 0.028). Additionally, mRNA for GPR109A was found (GPR109A:RPS9 mRNA abundance ≥ 0.004) in each of the 5 regions of bovine brain that were analyzed: cerebral cortex, cerebellum, thalamus, hypothalamus, and brain stem. Evaluation of liver tissue by immunofluorescence suggested that GPR109A was expressed in parenchymal cells and not localized exclusively to immune-system cells. Finally, analysis of the putative bovine GPR109A sequence verified that AA residues required for binding niacin in human GPR109A are conserved, suggesting that the bovine sequence identified encodes a functional niacin receptor. The identification of GPR109A in bovine liver, muscle, and brain is a novel finding.


Subject(s)
Cattle/metabolism , Receptors, Nicotinic/metabolism , Amino Acid Sequence , Animals , Cattle/genetics , Gene Expression Profiling , Gene Expression Regulation , Molecular Sequence Data , RNA, Messenger/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Sequence Alignment
5.
J Anim Sci ; 89(11): 3783-91, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21680791

ABSTRACT

Our objectives were to determine the effects of zilpaterol hydrochloride (ZH) and the release rate of trenbolone acetate and estradiol-17ß on the Warner-Bratzler shear force (WBSF) and slice shear force (SSF) of longissimus lumborum (LL) and the WBSF of gluteus medius (GM) and psoas major (PM) in response to various aging periods. British × Continental steers (n = 168) were assigned to treatments in a 3 × 2 factorial. The main effects of treatment were implant (no implant, Revalor-S, Revalor-XS, Intervet/Schering Plough Animal Health, De Soto, KS) and ZH (0 or 8.3 mg/kg of DM for 20 d). Slaughter group was included as a random effect to account for the variation in days on feed (153 or 174 d). Loins (n = 96) were fabricated to obtain strip loin, top sirloin butt, and tenderloin subprimals. Five 2.54-cm steaks were cut from each subprimal and assigned to 1 of 5 aging periods (7, 14, 21, 28, or 35 d postmortem). Feeding ZH increased (P ≤ 0.01) LL WBSF and SSF values at each aging period compared with controls. Implanting increased (P < 0.05) LL WBSF values at 14 and 21 d, but did not affect LL SSF values (P > 0.05). Only Revalor-S increased (P ≤ 0.05) WBSF values at 28 and 35 d compared with no implant or Revalor-XS. The percentage of LL steaks with a WBSF value below 4.6 kg did not differ (P > 0.05) between ZH supplementation or implant strategy at any aging period, and by d 28, more than 99% of LL steaks registered WBSF values below 4.6 kg. Feeding ZH increased (P < 0.05) GM WBSF values only on d 21. Implant had no effect (P > 0.05) on GM WBSF values. The percentage of GM steaks with a WBSF value below 4.6 kg did not differ (P > 0.05) between ZH supplementation or implant strategy at any aging period. Neither ZH nor implant strategy affected PM WBSF values (P > 0.05). All PM WBSF values were below 4.6 kg on d 7. The results of this study indicated that feeding ZH increased WBSF and SSF of LL steaks, regardless of the aging period; however, the percentage of steaks with WBSF below 4.6 kg did not differ because of ZH or implant. Implanting increased LL WBSF values, but not SSF values. These results showed that although differences existed between implanting, as well as ZH supplementation of British × Continental steers, 99% of LL steaks were classified as tender based on WBSF values by extending aging to 28 d postmortem. It should be noted that 21.2% of 7-d, 13.8% of 14-d, and 17.3% of 21-d ZH steaks had WBSF values greater than 4.6 kg, but 0% of nonsupplemented steaks were greater than 4.6 kg at these aging periods. However, because ZH and implants can increase retail yield of valuable subprimals, such as the tenderloin, considerable value could be captured through ZH supplementation with anabolic implants because shear force was not affected in PM steaks.


Subject(s)
Adrenergic beta-2 Receptor Agonists/administration & dosage , Cattle/physiology , Estradiol/administration & dosage , Meat/standards , Muscle, Skeletal/drug effects , Trenbolone Acetate/analogs & derivatives , Trimethylsilyl Compounds/administration & dosage , Animals , Drug Combinations , Least-Squares Analysis , Male , Muscle, Skeletal/physiology , Random Allocation , Trenbolone Acetate/administration & dosage
6.
Meat Sci ; 84(3): 371-6, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20374798

ABSTRACT

The objective of this research was to develop methods to conserve water necessary to cleanse beef heads prior to USDA-FSIS inspection. This was to be accomplished by establishing a baseline for the minimum amount of water necessary to adequately wash a head and application of image analysis to provide an objective measure of head cleaning. Twenty-one beef heads were manually washed during the harvest process. An average 18.75 L (2.49 SD) and a maximum of 23.88 L were required to cleanse the heads to USDA-FSIS standards. Digital images were captured before and after manual washing then evaluated for percentage red saturation using commercially available image analysis software. A decaying exponential curve extracted from these data indicated that as wash water increased beyond 20 L the impact on red saturation decreased. At 4 sigma from the mean of 18.75 L, red saturation is 16.0 percent, at which logistic regression analysis indicates 99.994 percent of heads would be accepted for inspection, or less than 1 head in 15,000 would be rejected. Reducing to 3 sigma would increase red saturation to 27.6 percent, for which 99.730 percent of heads likely would be accepted (less than 1 in 370 would be rejected).


Subject(s)
Abattoirs , Consumer Product Safety , Food Contamination/prevention & control , Food Handling/methods , Meat/standards , Water Supply/economics , Abattoirs/economics , Animals , Cattle , Color , Conservation of Natural Resources/economics , Food Inspection , Hand , Head , Humans , Image Processing, Computer-Assisted , Logistic Models , United States , United States Department of Agriculture , Water
7.
J Anim Sci ; 86(6): 1434-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18310492

ABSTRACT

With the adoption of visual instrument grading, the calculated yield grade can be used for payment to cattle producers selling on grid pricing systems. The USDA beef carcass grading standards include a relationship between required LM area (LMA) and HCW that is an important component of the final yield grade. As noted on a USDA yield grade LMA grid, a 272-kg (600-lb) carcass requires a 71-cm(2) (11.0-in.(2)) LMA and a 454-kg (1,000-lb) carcass requires a 102-cm(2) (15.8-in.(2)) LMA. This is a linear relationship, where required LMA = 0.171(HCW) + 24.526. If a beef carcass has a larger LMA than required, the calculated yield grade is lowered, whereas a smaller LMA than required increases the calculated yield grade. The objective of this investigation was to evaluate the LMA to HCW relationship against data on 434,381 beef carcasses in the West Texas A&M University (WTAMU) Beef Carcass Research Center database. In contrast to the USDA relationship, our data indicate a quadratic relationship [WTAMU LMA = 33.585 + 0.17729(HCW) -0.0000863(HCW(2))] between LMA and HCW whereby, on average, a 272-kg carcass has a 75-cm(2) (11.6-in.(2)) LMA and a 454-kg carcass has a 96-cm(2) (14.9-in.(2)) LMA, indicating a different slope and different intercept than those in the USDA grading standards. These data indicate that the USDA calculated yield grade equation favors carcasses lighter than 363 kg (800 lb) for having above average muscling and penalizes carcasses heavier than 363 kg (800 lb) for having below average muscling. If carcass weights continue to increase, we are likely to observe greater proportions of yield grade 4 and 5 carcasses because of the measurement bias that currently exists in the USDA yield grade equation.


Subject(s)
Body Weight/physiology , Cattle , Mathematics , Meat/classification , Muscle, Skeletal/anatomy & histology , Animals , Body Composition , Meat/economics , Meat/standards , United States , United States Department of Agriculture
SELECTION OF CITATIONS
SEARCH DETAIL
...