Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 165: 1-12, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33971275

ABSTRACT

In vitro dissolution tests are widely used to monitor the quality and consistency of oral solid dosage forms, but to increase the physiological relevance of in vitro dissolution tests, newer systems combine dissolution and permeation measurements. Some of these use artificial membranes while others (e.g., in the in vitro dissolution absorption system 2; IDAS2), utilize cell monolayers to assess drug permeation. We determined the effect of the precipitation inhibitor Hypromellose Acetate Succinate (HPMCAS) on the supersaturation/permeation of Ketoconazole and Dipyridamole in IDAS2 and its effect on their absorption in rats. Thus the main objectives of this study were to determine: (1) whether dissolution and permeation data from IDAS2 could be used to predict rat plasma concentration using an absorption model and (2) whether the effect of the precipitation inhibitor HPMCAS on supersaturation and permeation in IDAS2 was correlated with its effect on systemic absorption in the rat. Predicted drug concentrations in rat plasma, generated using parameters estimated from IDAS2 dissolution/permeation data and a mathematical absorption model, showed good agreement with measured concentrations. While in IDAS2, the prolongation of Ketoconazole's supersaturation caused by HPMCAS led to higher permeation, which paralleled the higher systemic absorption in rats, Dipyridamole showed no supersaturation and, thus, no effect of HPMCAS in dissolution or permeation in IDAS2 and no effect on Dipyridamole absorption in rats. The ability of IDAS2 to detect supersaturation following a pH-shift supports the potential value of this system for studying approaches to enhance intestinal absorption through supersaturation and the accuracy of plasma concentration predictions in rats suggest the possibility of combining IDAS2 with absorption models to predict plasma concentration in different species.


Subject(s)
Absorption, Physiological , Drug Liberation , Models, Biological , Administration, Oral , Animals , Caco-2 Cells , Dipyridamole/administration & dosage , Dipyridamole/pharmacokinetics , Humans , Ketoconazole/administration & dosage , Ketoconazole/pharmacokinetics , Male , Models, Animal , Rats , Solubility
2.
Drug Dev Ind Pharm ; 46(1): 80-90, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31794275

ABSTRACT

While Health authorities in Panama strive to increase generic drug use to contain the rising costs of medicines, there is still hesitation to embrace generic drugs. Thus, regulators and drug companies need to ensure the quality, safety and efficacy of generic drugs. One prevailing concern is the absence of control over lot-to-lot changes, which may impact consistent therapeutic performance. The objective of this work was to determine whether near-infrared spectroscopy (NIR) could detect product changes. Calibration models were built using reference (standard) tablets of two products: Virax® (200 mg acyclovir) and Amlopin® (5 mg amlodipine). Then, to assess the sensitivity of NIR to product changes we compared reference versus deliberately-modified formulations of these products. Comparisons were made using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) of NIR spectra. Several modified lots were different from reference lots, and 3D score plots showed greater discrimination by PLS-DA than PCA. The Kth nearest neighbor scores (KNN) of the modified batches were used to classify formulations as identical or not identical versus the reference. In addition, the differences detected by NIR were correlated with different in vitro dissolution and/or permeation in the in vitro dissolution absorption system 2 (IDAS2): NIR and IDAS2 yielded the same rank-order of difference for the modified lots tested. This study suggests that NIR and IDAS2 can help detect lots of generic drugs that differ from the reference lots. This strategy may help regulatory agencies in developing countries to safeguard patients against lot-to-lot changes in generic products.


Subject(s)
Drugs, Generic , Spectroscopy, Near-Infrared/methods , Chemistry, Pharmaceutical/methods , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...