Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(2)2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31940781

ABSTRACT

An innovative hyperspectral LIDAR instrument has been developed for applications in marine environment monitoring research activities, remotely detecting the fluorescence spectra produced in the spectral interval between 400 nm and 720 nm. The detection system is composed by a custom made photomultiplier charge integrating and measuring (CIM) unit, which makes automatic background signal subtraction, and a liquid crystal tunable filter (LCTF). The new instrument therefore has hyperspectral resolution and allows automatic background subtraction; it is compact and automated by custom software that permit to adapt the instrument properties depending on the environmental conditions. Laboratory tests to characterize the instrument performance have been carried out, concluding that this sensor can be employed in remote sites for Chl-a detection.

2.
Appl Spectrosc ; 70(6): 1001-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27076514

ABSTRACT

The most meaningful spectral components in laser-induced fluorescence (LIF) spectra for several different commercial plastics have been individuated and used to automatically discriminate among different plastic materials and between plastics and complex organic materials, such as woods. Starting from LIF measurements on known samples, a number of significant wavelengths have been identified by principal component analysis (PCA). These have been used to produce intensity ratios functional to the discrimination. Threshold values for such ratios have been individuated in order to obtain an automatic recognition of plastics. The work done has been preparatory to the design and development of a multispectral imaging LIF system for fast detection of plastic debris in a post-blast scene.

3.
Appl Opt ; 47(24): 4405-12, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-18716647

ABSTRACT

A laser flow cytometer based on scanning flow cytometry has been assembled. The unpolarized and linearly polarized light-scattering profiles, as well as the side emitted light in different spectral bands, were measured, allowing the simultaneous and real-time determination of the effective size and the effective refractive index of each spherelike particle. Additionally, each particle could be identified from depolarization and fluorescence measured simultaneously. The tests with aqueous samples of polystyrene spheres, fluorescent or nonfluorescent, and phytoplankton cells demonstrate that the system is able to retrieve size and refractive index with an accuracy of 1% and that the depolarization and fluorescence measurements allow the classification of particles otherwise indistinguishable.

SELECTION OF CITATIONS
SEARCH DETAIL
...