Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 26(5): 2126-2134, 2020 05.
Article in English | MEDLINE | ID: mdl-32078547

ABSTRACT

Emergent in the field of head mounted display design is a desire to leverage the limitations of the human visual system to reduce the computation, communication, and display workload in power and form-factor constrained systems. Fundamental to this reduced workload is the ability to match display resolution to the acuity of the human visual system, along with a resulting need to follow the gaze of the eye as it moves, a process referred to as foveation. A display that moves its content along with the eye may be called a Foveated Display, though this term is also commonly used to describe displays with non-uniform resolution that attempt to mimic human visual acuity. We therefore recommend a definition for the term Foveated Display that accepts both of these interpretations. Furthermore, we include a simplified model for human visual Acuity Distribution Functions (ADFs) at various levels of visual acuity, across wide fields of view and propose comparison of this ADF with the Resolution Distribution Function of a foveated display for evaluation of its resolution at a particular gaze direction. We also provide a taxonomy to allow the field to meaningfully compare and contrast various aspects of foveated displays in a display and optical technology-agnostic manner.

2.
Soft Robot ; 6(5): 611-620, 2019 10.
Article in English | MEDLINE | ID: mdl-31381482

ABSTRACT

This article presents a machine learning approach to map outputs from an embedded array of sensors distributed throughout a deformable body to continuous and discrete virtual states, and its application to interpret human touch in soft interfaces. We integrate stretchable capacitors into a rubber membrane, and use a passive addressing scheme to probe sensor arrays in real time. To process the signals from this array, we feed capacitor measurements into convolutional neural networks that classify and localize touch events on the interface. We implement this concept with a device called OrbTouch. To modularize the system, we use a supervised learning approach wherein a user defines a set of touch inputs and trains the interface by giving it examples; we demonstrate this by using OrbTouch to play the popular game Tetris. Our regression model localizes touches with mean test error of 0.09 mm, whereas our classifier recognizes five gestures with a mean test error of 1.2%. In a separate demonstration, we show that OrbTouch can discriminate between 10 different users with a mean test error of 2.4%. At test time, we feed the outputs of these models into a debouncing algorithm to provide a nearly error-free experience.


Subject(s)
Elastomers , Nanotubes, Carbon , Recognition, Psychology , Touch Perception , Touch , Humans , Algorithms , Elastomers/chemistry , Gestures , Machine Learning , Nanotubes, Carbon/chemistry , Neural Networks, Computer , Recognition, Psychology/physiology , Touch/physiology , Touch Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...