Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol Exp ; 7(1): 34, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37394534

ABSTRACT

Flow-related artifacts have been observed in highly accelerated T1-weighted contrast-enhanced wave-controlled aliasing in parallel imaging (CAIPI) magnetization-prepared rapid gradient-echo (MPRAGE) imaging and can lead to diagnostic uncertainty. We developed an optimized flow-mitigated Wave-CAIPI MPRAGE acquisition protocol to reduce these artifacts through testing in a custom-built flow phantom. In the phantom experiment, maximal flow artifact reduction was achieved with the combination of flow compensation gradients and radial reordered k-space acquisition and was included in the optimized sequence. Clinical evaluation of the optimized MPRAGE sequence was performed in 64 adult patients, who all underwent contrast-enhanced Wave-CAIPI MPRAGE imaging without flow-compensation and with optimized flow-compensation parameters. All images were evaluated for the presence of flow-related artifacts, signal-to-noise ratio (SNR), gray-white matter contrast, enhancing lesion contrast, and image sharpness on a 3-point Likert scale. In the 64 cases, the optimized flow mitigation protocol reduced flow-related artifacts in 89% and 94% of the cases for raters 1 and 2, respectively. SNR, gray-white matter contrast, enhancing lesion contrast, and image sharpness were rated as equivalent for standard and flow-mitigated Wave-CAIPI MPRAGE in all subjects. The optimized flow mitigation protocol successfully reduced the presence of flow-related artifacts in the majority of cases.Relevance statementAs accelerated MRI using novel encoding schemes become increasingly adopted in clinical practice, our work highlights the need to recognize and develop strategies to minimize the presence of unexpected artifacts and reduction in image quality as potential compromises to achieving short scan times.Key points• Flow-mitigation technique led to an 89-94% decrease in flow-related artifacts.• Image quality, signal-to-noise ratio, enhancing lesion conspicuity, and image sharpness were preserved with the flow mitigation technique.• Flow mitigation reduced diagnostic uncertainty in cases where flow-related artifacts mimicked enhancing lesions.


Subject(s)
Brain , Magnetic Resonance Imaging , Adult , Humans , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Phantoms, Imaging , Artifacts
2.
Magn Reson Med ; 89(5): 1777-1790, 2023 05.
Article in English | MEDLINE | ID: mdl-36744619

ABSTRACT

PURPOSE: To develop a robust retrospective motion-correction technique based on repeating k-space guidance lines for improving motion correction in Cartesian 2D and 3D brain MRI. METHODS: The motion guidance lines are inserted into the standard sequence orderings for 2D turbo spin echo and 3D MPRAGE to inform a data consistency-based motion estimation and reconstruction, which can be guided by a low-resolution scout. The extremely limited number of required guidance lines are repeated during each echo train and discarded in the final image reconstruction. Thus, integration within a standard k-space acquisition ordering ensures the expected image quality/contrast and motion sensitivity of that sequence. RESULTS: Through simulation and in vivo 2D multislice and 3D motion experiments, we demonstrate that respectively 2 or 4 optimized motion guidance lines per shot enables accurate motion estimation and correction. Clinically acceptable reconstruction times are achieved through fully separable on-the-fly motion optimizations (˜1 s/shot) using standard scanner GPU hardware. CONCLUSION: The addition of guidance lines to scout accelerated motion estimation facilitates robust retrospective motion correction that can be effectively introduced without perturbing standard clinical protocols and workflows.


Subject(s)
Brain , Magnetic Resonance Imaging , Retrospective Studies , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Motion , Computer Simulation , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods
3.
Med Phys ; 50(4): 2148-2161, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36433748

ABSTRACT

BACKGROUND: Intra-scan rigid-body motion is a costly and ubiquitous problem in clinical magnetic resonance imaging (MRI) of the head. PURPOSE: State-of-the-art methods for retrospective motion correction in MRI are often computationally expensive or in the case of image-to-image deep learning (DL) based methods can be prone to undesired alterations of the image (hallucinations'). In this work we introduce a novel rigid-body motion correction method which combines the advantages of classical model-driven and data-consistency (DC) preserving approaches with a novel DL algorithm, to provide fast and robust retrospective motion correction. METHODS: The proposed Motion Parameter Estimating Densenet (MoPED) retrospectively estimates subject head motion during MRI acquisitions using a DL network with DenseBlocks and multitask learning. It quantifies the 2D rigid in-plane motion parameters slice-wise for each echo train (ET) of a Cartesian T2-weighted 2D Turbo-Spin-Echo sequence. The network receives a center patch of the motion corrupted k-space as well as an additional motion-free low-resolution reference scan to provide the ground truth orientation. The supervised training utilizes motion simulations based on 28 acquisitions with subject-wise training, validation, and test data splits of 70%, 23%, and 7%. During inference, MoPED is embedded in an iterative DC-driven motion correction algorithm which alternatingly updates estimates of the motion parameters and motion-corrected low-resolution k-space data. The estimated motion parameters are then used to reconstruct the final motion corrected image. The mean absolute/squared error and the Pearson correlation coefficient were used to analyze the motion parameter estimation quality on in-silico data in a quantitative evaluation. Structural similarity (SSIM), DC error and root mean squared error (RMSE) were used as metrics of image quality improvement. Furthermore, the generalization capability of the network was analyzed on two in-vivo motion volumes with 28 slices each and on one simulated T1-weighted volume. RESULTS: The motion estimation achieves a Pearson correlation of 0.968 to the simulated ground-truth of the 2433 test data slices used. In-silico results indicate that MoPED decreases the time for the optimization by a factor of around 27 compared to a conventional method and is able to reduce the RMSE of the reconstructions and average DC error by more than a factor of two compared to uncorrected images. In-vivo experiments show a decrease in computation time by a factor of around 20, a RMSE decrease from 0.055 to 0.033 and an SSIM increase from 0.795 to 0.862. Furthermore, contrast independence is demonstrated as MoPED is also able to correct T1-weighted images in simulations without retraining. Due to the model-based correction, no hallucinations were observed. CONCLUSIONS: Incorporating DL in a model-based motion correction algorithm shows great benefit on the optimization and computation time. The k-space-based estimation also allows a data consistent correction and therefore avoids the risk of hallucinations of image-to-image approaches.


Subject(s)
Deep Learning , Retrospective Studies , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Motion , Artifacts
4.
Eur Radiol ; 32(10): 7128-7135, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35925387

ABSTRACT

OBJECTIVES: Wave-CAIPI (Controlled Aliasing in Parallel Imaging) enables dramatic reduction in acquisition time of 3D MRI sequences such as 3D susceptibility-weighted imaging (SWI) but has not been clinically evaluated at 1.5 T. We sought to compare highly accelerated Wave-CAIPI SWI (Wave-SWI) with two alternative standard sequences, conventional three-dimensional SWI and two-dimensional T2*-weighted Gradient-Echo (T2*w-GRE), in patients undergoing routine brain MRI at 1.5 T. METHODS: In this study, 172 patients undergoing 1.5 T brain MRI were scanned with a more commonly used susceptibility sequence (standard SWI or T2*w-GRE) and a highly accelerated Wave-SWI sequence. Two radiologists blinded to the acquisition technique scored each sequence for visualization of pathology, motion and signal dropout artifacts, image noise, visualization of normal anatomy (vessels and basal ganglia mineralization), and overall diagnostic quality. Superiority testing was performed to compare Wave-SWI to T2*w-GRE, and non-inferiority testing with 15% margin was performed to compare Wave-SWI to standard SWI. RESULTS: Wave-SWI performed superior in terms of visualization of pathology, signal dropout artifacts, visualization of normal anatomy, and overall image quality when compared to T2*w-GRE (all p < 0.001). Wave-SWI was non-inferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall image quality (all p < 0.001). Wave-SWI was superior to standard SWI for motion artifact (p < 0.001), while both conventional susceptibility sequences were superior to Wave-SWI for image noise (p < 0.001). CONCLUSIONS: Wave-SWI can be performed in a 1.5 T clinical setting with robust performance and preservation of diagnostic quality. KEY POINTS: • Wave-SWI accelerated the acquisition of 3D high-resolution susceptibility images in 70% of the acquisition time of the conventional T2*GRE. • Wave-SWI performed superior to T2*w-GRE for visualization of pathology, signal dropout artifacts, and overall diagnostic image quality. • Wave-SWI was noninferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall diagnostic image quality.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Artifacts , Brain/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods
5.
Magn Reson Med ; 87(1): 163-178, 2022 01.
Article in English | MEDLINE | ID: mdl-34390505

ABSTRACT

PURPOSE: To demonstrate a navigator/tracking-free retrospective motion estimation technique that facilitates clinically acceptable reconstruction time. METHODS: Scout accelerated motion estimation and reduction (SAMER) uses a single 3-5 s, low-resolution scout scan and a novel sequence reordering to independently determine motion states by minimizing the data-consistency error in a SENSE plus motion forward model. This eliminates time-consuming alternating optimization as no updates to the imaging volume are required during the motion estimation. The SAMER approach was assessed quantitatively through extensive simulation and was evaluated in vivo across multiple motion scenarios and clinical imaging contrasts. Finally, SAMER was synergistically combined with advanced encoding (Wave-CAIPI) to facilitate rapid motion-free imaging. RESULTS: The highly accelerated scout provided sufficient information to achieve accurate motion trajectory estimation (accuracy ~0.2 mm or degrees). The novel sequence reordering improved the stability of the motion parameter estimation and image reconstruction while preserving the clinical imaging contrast. Clinically acceptable computation times for the motion estimation (~4 s/shot) are demonstrated through a fully separable (non-alternating) motion search across the shots. Substantial artifact reduction was demonstrated in vivo as well as corresponding improvement in the quantitative error metric. Finally, the extension of SAMER to Wave-encoding enabled rapid high-quality imaging at up to R = 9-fold acceleration. CONCLUSION: SAMER significantly improved the computational scalability for retrospective motion estimation and correction.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Algorithms , Computer Simulation , Magnetic Resonance Imaging , Motion , Retrospective Studies
6.
MAGMA ; 26(5): 463-76, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23443882

ABSTRACT

OBJECT: The specific absorption rate (SAR) can be determined from radiofrequency transmit fields measured via magnetic resonance imaging. MATERIALS AND METHODS: The proposed method estimates the SAR solely from the complex transmit field (B1(+)) by taking into account the particular properties of the electromagnetic field generated by an 8-channel transmit array. It is further based on an iterative consistency check between the measured B1(+) magnitude and an appropriate field estimate fulfilling Maxwell's equations. For testing the method, simulations and phantom experiments were performed for a multi-transmit array at 3T using a cylindrical phantom. RESULTS: The method's robustness with respect to the assumptions made about electric tissue properties as well as its stability under different initial conditions regarding the signal phase was shown. A high sensitivity to signal noise was found. Robust reconstruction results were achieved including information from more than two transmit elements. The validity of the experimental results was confirmed by a qualitative comparison to simulated electromagnetic fields. CONCLUSIONS: The method allows the determination of the SAR as well as the transmit phase of the individual channels of a multi-transmit array. With additional B0 inhomogeneity measurements, a reconstruction of the receive phase is feasible independent of the receive coil type in use.


Subject(s)
Magnetic Resonance Imaging/methods , Absorption , Algorithms , Computer Simulation , Electric Conductivity , Electromagnetic Fields , Equipment Design , Humans , Magnetics , Phantoms, Imaging , Radio Waves , Transducers
7.
IEEE Trans Med Imaging ; 29(7): 1401-11, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20442045

ABSTRACT

Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.


Subject(s)
Algorithms , Brain/anatomy & histology , Echo-Planar Imaging/methods , Image Interpretation, Computer-Assisted/methods , Radiometry/methods , Electromagnetic Fields , Humans , Image Enhancement/methods , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...