Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 141: 105406, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37160199

ABSTRACT

Here we investigate the suitability of in vitro models to assess the skin and eye irritation potential of six microbial strains. Acute skin irritation was tested according to the unmodified and modified OECD test guideline (OECD TG) 439, while acute eye irritation was examined using the OECD TG 491 and 492. The OECD TG 439 guideline, modified to introduce 8-10 µg/mL of streptomycin during the recovery phase and use of test items containing 100% microbial product instead of finished formulae, was found to be suitable for skin irritation evaluation. On the other hand, the OECD TG 491 procedure was the most appropriate for evaluating eye irritation. None of the six microbial strains, namely, Lactiplantibacillus plantarum (IMI 507026, IMI 507027, IMI 507028), Lacticaseibacillus rhamnosus (IMI 507023), and Pediococcus pentosaceus (IMI 507024, IMI 507025), tested in this study caused skin or eye irritation under the study condition.


Subject(s)
Lactobacillales , Skin Diseases , Animals , Irritants/toxicity , Animal Testing Alternatives , Skin , Skin Irritancy Tests
2.
Front Immunol ; 9: 1902, 2018.
Article in English | MEDLINE | ID: mdl-30154800

ABSTRACT

Bovine neonatal pancytopenia (BNP) was a vaccine-induced alloimmune disease observed in young calves and characterized by hemorrhages, pancytopenia, and severe destruction of the hematopoietic tissues. BNP was induced by alloreactive maternal antibodies present in the colostrum of certain cows vaccinated with a highly adjuvanted vaccine against bovine viral diarrhea. Bioprocess impurities, originating from the production cell line of the vaccine, are likely to have induced these alloreactive antibodies. One prominent alloantigen recognized by vaccine-induced alloantibodies is highly polymorphic bovine major histocompatibility complex class I antigen (bovine leukocyte antigen 1-BoLA I). Aim of this study was to define the fine specificity of BNP-associated anti-BoLA I alloantibodies. In total, eight different BoLA I alleles from the production cell line were identified. All genes were cloned and recombinantly expressed in murine cell lines. Using these cells in a flow cytometric assay, the presence of BoLA I specific alloantibodies in BNP dam sera was proven. Three BoLA I variants were identified that accounted for the majority of vaccine-induced BoLA I reactivity. By comparing the sequence of immunogenic to non-immunogenic BoLA I variants probable minimal epitopes on BoLA I were identified. In general, dams of BNP calves displayed high levels of BoLA I reactive alloantibodies, while vaccinated cows delivering healthy calves had significantly lower alloantibody titers. We identified a subgroup of vaccinated cows with healthy calves displaying very high alloantibody titers. Between these cows and BNP dams no principle difference in the BoLA I reactivity pattern was observed. However, with a limited set of dam-calf pairs it could be demonstrated that serum from these cows did not bind to BoLA I expressing leukocytes of their offspring. By contrast, when testing cells from surviving BNP calves with the corresponding dam's serum there was significant binding. We therefore conclude that predominantly highly alloreactive cows are at risk to induce BNP and it depends on the paternally inherited BoLA I whether or not the calf develops BNP.


Subject(s)
Cattle Diseases/etiology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Isoantibodies/immunology , Pancytopenia/veterinary , Alleles , Amino Acid Sequence , Animals , Animals, Newborn , Cattle , Cell Line , Gene Expression , Histocompatibility Antigens Class I/chemistry , Immunization , Isoantibodies/adverse effects , Models, Molecular , Protein Conformation
3.
J Immunol ; 196(6): 2723-32, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26889044

ABSTRACT

A new class of highly antigenic, MHC-II-restricted mycobacterial lipopeptides that are recognized by CD4-positive T lymphocytes of Mycobacterium tuberculosis-infected humans has recently been described. To investigate the relevance of this novel class of mycobacterial Ags in the context of experimental bacille Calmette-Guérin (BCG) vaccination, Ag-specific T cell responses to mycobacterial lipid and lipopeptide-enriched Ag preparations were analyzed in immunized guinea pigs. Lipid and lipopeptide preparations as well as complex Ag mixtures, such as tuberculin, mycobacterial lysates, and culture supernatants, all induced a similar level of T cell proliferation. The hypothesis that lipopeptide-specific T cells dominate the early BCG-induced T cell response was corroborated in restimulation assays by the observation that Ag-expanded T cells specifically responded to the lipopeptide preparation. A comparative analysis of the responses to Ag preparations from different mycobacterial species revealed that the antigenic lipopeptides are specific for strains of the M. tuberculosis complex. Their intriguing conservation in pathogenic tuberculous bacteria and the fact that these highly immunogenic Ags seem to be actively released during in vitro culture and intracellular infection prompt the urgent question about their role in the fine-tuned interplay between the pathogen and its mammalian host, in particular with regard to BCG vaccination strategies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Animals , Bacterial Proteins/immunology , CD4-Positive T-Lymphocytes/virology , Cell Proliferation , Cells, Cultured , Guinea Pigs , Host-Pathogen Interactions , Humans , Lipopeptides/immunology , Lymphocyte Activation , Mycobacterium bovis/immunology , Tuberculin/immunology , Tuberculosis/prevention & control , Vaccination
4.
ALTEX ; 32(3): 201-10, 2015.
Article in English | MEDLINE | ID: mdl-25935213

ABSTRACT

The tuberculin skin test is the method of choice for tuberculosis surveillance in livestock ruminants. The exact definition of the biological activity of bovine tuberculin purified protein derivatives (bovine tuberculin PPDs) is essential for the reliability of a test system. PPDs consist of heterogeneous mixtures of mycobacterial antigens, making it difficult to determine their potency in vitro. The commonly used batch potency test is therefore based on the evaluation of skin reactions in mycobacteria-sensitized guinea pigs. Aim of the present study was to test an alternative in vitro method that reliably quantifies tuberculin PPD potency. This novel approach may prevent animal distress in the future. To this end a flow cytometry-based lymphocyte proliferation assay using peripheral blood mononuclear cells (PBMCs) from sensitized guinea pigs was established. Potency estimates for individual PPD preparations were calculated in comparison to an international standard. The comparison with results obtained from the guinea pig skin test revealed that the lymphocyte proliferation assay is more precise but results in systematically higher potency estimates. However, with a manufacturer specific correction factor a correlation of over 85% was achieved, highlighting the potential of this in vitro method to replace the current guinea pig skin test.


Subject(s)
BCG Vaccine/immunology , Lymphocytes/physiology , Tuberculosis/prevention & control , Animal Testing Alternatives , Animals , BCG Vaccine/administration & dosage , Cattle , Flow Cytometry , Guinea Pigs , In Vitro Techniques , Leukocytes, Mononuclear/microbiology , Mycobacterium tuberculosis/immunology , Reproducibility of Results , Tuberculin Test , Tuberculosis/immunology , Vaccine Potency
SELECTION OF CITATIONS
SEARCH DETAIL
...