Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 158(16)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37092878

ABSTRACT

The interaction of 2-propanol with Co3O4(001) was studied by vibrational sum frequency spectroscopy and ab initio molecular dynamics simulations of 2-propanol dissolved in a water film to gain an insight, at the molecular level, into the pathways of catalytic oxidation. The experimental study has been performed under near ambient conditions, where the presence of water vapor is unavoidable, resulting in a water film on the sample and, thereby, allowing us to mimic the solution-water interface. Both experiment and theory conclude that 2-propanol adsorbs molecularly. The lack of dissociation is attributed to the adsorption geometry of 2-propanol in which the O-H bond does not point toward the surface. Furthermore, the copresent water not only competitively adsorbs on the surface but also inhibits 2-propanol deprotonation. The calculations reveal that the presence of water deactivates the lattice oxygen, thereby reducing the surface activity. This finding sheds light on the multifaceted role of water at the interface for the electrochemical oxidation of 2-propanol in aqueous solution as recently reported [Falk et al., ChemCatChem 13, 2942-2951 (2021)]. At higher temperatures, 2-propanol remains molecularly adsorbed on Co3O4(001) until it desorbs with increasing surface temperature.

2.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35335734

ABSTRACT

We combine theoretical and experimental X-ray absorption near-edge spectroscopy (XANES) to probe the local environment around cationic sites of bulk spinel cobalt tetraoxide (Co3O4). Specifically, we analyse the oxygen K-edge spectrum. We find an excellent agreement between our calculated spectra based on the density functional theory and the projector augmented wave method, previous calculations as well as with the experiment. The oxygen K-edge spectrum shows a strong pre-edge peak which can be ascribed to dipole transitions from O 1s to O 2p states hybridized with the unoccupied 3d states of cobalt atoms. Also, since Co3O4 contains two types of Co atoms, i.e., Co3+ and Co2+, we find that contribution of Co2+ ions to the pre-edge peak is solely due to single spin-polarized t2g orbitals (dxz, dyz, and dxy) while that of Co3+ ions is due to spin-up and spin-down polarized eg orbitals (dx2-y2 and dz2). Furthermore, we deduce the magnetic moments on the Co3+ and Co2+ to be zero and 3.00 µB respectively. This is consistent with an earlier experimental study which found that the magnetic structure of Co3O4 consists of antiferromagnetically ordered Co2+ spins, each of which is surrounded by four nearest neighbours of oppositely directed spins.

3.
ACS Appl Mater Interfaces ; 13(44): 51962-51973, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34323466

ABSTRACT

Herein, we report nanosecond, single-pulse laser post-processing (PLPP) in a liquid flat jet with precise control of the applied laser intensity to tune structure, defect sites, and the oxygen evolution reaction (OER) activity of mesostructured Co3O4. High-resolution X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) are consistent with the formation of cobalt vacancies at tetrahedral sites and an increase in the lattice parameter of Co3O4 after the laser treatment. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) further reveal increased disorder in the structure and a slight decrease in the average oxidation state of the cobalt oxide. Molecular dynamics simulation confirms the surface restructuring upon laser post-treatment on Co3O4. Importantly, the defect-induced PLPP was shown to lower the charge transfer resistance and boost the oxygen evolution activity of Co3O4. For the optimized sample, a 2-fold increment of current density at 1.7 V vs RHE is obtained and the overpotential at 10 mA/cm2 decreases remarkably from 405 to 357 mV compared to pristine Co3O4. Post-mortem characterization reveals that the material retains its activity, morphology, and phase structure after a prolonged stability test.

4.
Phys Chem Chem Phys ; 23(1): 415-424, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33319872

ABSTRACT

Proteins are the most abundant biomacromolecules in living cells, where they perform vital roles in virtually every biological process. To maintain their function, proteins need to remain in a stable (native) state. Inter- and intramolecular interactions in aqueous protein solutions govern the fate of proteins, as they can provoke their unfolding or association into aggregates. The initial steps of protein aggregation are difficult to capture experimentally, therefore we used molecular dynamics simulations in this study. We investigated the initial phase of aggregation of two different lysozymes, hen egg-white (HEWL) and T4 WT* lysozyme and also human lens γ-D crystallin by using atomistic simulations. We monitored the phase stability of their aqueous solutions by calculating time-dependent density fluctuations. We found that all proteins remained in their compact form despite aggregation. With an extensive analysis of intermolecular residue-residue interactions we discovered that arginine is of paramount importance in the initial stage of aggregation of HEWL and γ-D crystallin, meanwhile lysine was found to be the most involved amino acid in forming initial contacts between T4 WT* molecules.


Subject(s)
Muramidase/metabolism , Protein Multimerization , gamma-Crystallins/metabolism , Amino Acid Sequence , Animals , Arginine/chemistry , Bacteriophage T4/chemistry , Chickens , Humans , Lysine/chemistry , Molecular Dynamics Simulation , Muramidase/chemistry , Protein Binding , Temperature , gamma-Crystallins/chemistry
5.
ACS Omega ; 4(1): 1434-1442, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459410

ABSTRACT

One-dimensional tungsten disulfide (WS2) single-walled nanotubes (NTs) with either achiral, i.e., armchair (n, n) and zigzag-type (n, 0), or chiral (2n, n) configuration with diameters d NT > 1.9 nm have been found to be suitable for photocatalytic applications, since their band gaps correspond to the frequency range of visible light between red and violet (1.5 eV < Δεgap < 2.6 eV). We have simulated the electronic structure of nanotubes with diameters up to 12.0 nm. The calculated top of the valence band and the bottom of the conduction band (εVB and εCB, respectively) have been properly aligned relatively to the oxidation (εO2/H2O) and reduction (εH2/H2O) potentials of water. Very narrow nanotubes (0.5 < d NT < 1.9 nm) are unsuitable for water splitting because the condition εVB < εO2/H2O < εH2/H2O < εCB does not hold. For nanotubes with d NT > 1.9 nm, the condition εVB < εO2/H2O < εH2/H2O < εCB is fulfilled. The values of εVB and εCB have been found to depend only on the diameter and not on the chirality index of the nanotube. The reported structural and electronic properties have been obtained from either hybrid density functional theory and Hartree-Fock linear combination of atomic orbitals calculations (using the HSE06 functional) or the linear augmented cylindrical waves density functional theory method. In addition to single-walled NTs, we have investigated a number of achiral double-walled (m, m)@(n, n) and (m, 0)@(n, 0) as well as triple-walled (l, l)@(m, m)@(n, n) and (l, 0)@(m, 0)@(n, 0) nanotubes. All multiwalled nanotubes show a common dependence of their band gap on the diameter of the inner nanotube, independent of chirality index and number of walls. This behavior of WS2 NTs allows the exploitation of the entire range of the visible spectrum by suitably tuning the band gap.

6.
J Am Chem Soc ; 141(4): 1506-1514, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30618253

ABSTRACT

Electrochemical CO reduction holds the promise to be a cornerstone for sustainable production of fuels and chemicals. However, the underlying understanding of the carbon-carbon coupling toward multiple-carbon products is not complete. Here we present thermodynamically realistic structures of the electrochemical interfaces, determined by explicit ab initio simulations. We investigate how key CO reduction reaction intermediates are stabilized in different electrolytes and at different pH values. We find that the catalytic trends previously observed experimentally can be explained by the interplay between the metal surface and the electrolyte. For the Cu(100) facet with a phosphate buffer electrolyte, the energy efficiency is found to be limited by blocking of a phosphate anion, while in alkali hydroxide solutions (MOH, M = Na, K, Cs), OH* intermediates may be present, and at high overpotential the H* coverage limits the reaction. The results provide insight into the electrochemical interface structure, revealing the limitations for multiple-carbon products, and offer a direct comparison to experiments.

7.
J Phys Chem B ; 122(21): 5432-5440, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29596747

ABSTRACT

We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH- group and an NH2+ cationic site on the surface.

8.
J Comput Chem ; 38(1): 51-58, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27792250

ABSTRACT

We report the development of adaptive QM/MM computer simulations for electrochemistry, providing public access to all sources via the free and open source software development model. We present a modular workflow-based MD simulation code as a platform for algorithms for partitioning space into different regions, which can be treated at different levels of theory on a per-timestep basis. Currently implemented algorithms focus on targeting molecules and their solvation layers relevant to electrochemistry. Instead of using built-in forcefields and quantum mechanical methods, the code features a universal interface, which allows for extension to a range of external forcefield programs and programs for quantum mechanical calculations, thus enabling the user to readily implement interfaces to those programs. The purpose of this article is to describe our codes and illustrate its usage. © 2016 Wiley Periodicals, Inc.

9.
Langmuir ; 32(32): 8275-86, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27442259

ABSTRACT

The relative position of the hydroxylic and carboxylic groups in the isomeric hydroxybenzoate (HB) anions is experimentally known to have a large impact on the thermodynamics of micellization of cationic surfactants, such as dodecyltrimethylammonium chloride (DTAC), and on the structure of the resulting micelles. To understand the effect of the different isomers on the molecular level, we employed atomistic molecular dynamics simulations to study systems containing infinitely long cylindrical DTAC micelles in aqueous solutions of the sodium salts of all three isomers of HB at a temperature and a pressure of 298.15 K and 1 atm. In all studied systems, the number of DTAC unimers is identical to the number of HB anions. At this concentration, the initially cylindrical micelles remain stable, irrespective of the nature of the isomer, whereas micelles rapidly disintegrated in the absence of HB anions. The HB isomers decrease the line density of unimers along the micellar axis and its concomitant thickness in the order o-HB > m-HB > p-HB. It is further observed that o-HB anions penetrate more deeply into the micellar core, induce a more ordered internal structure of the micelle, and are oriented more strongly than the other two isomers. In addition, the ortho isomer shows two different preferential orientations with respect to the radial direction of the cylindrical micelle; it can either be incorporated almost completely into the micelle or it can be attached through hydrogen bonding to one of those o-HB anions that are already incorporated into the micelle, and thus stick out of the micellar surface.

10.
Phys Chem Chem Phys ; 16(36): 19314-26, 2014 Sep 28.
Article in English | MEDLINE | ID: mdl-25099487

ABSTRACT

The relative position of the hydroxylic and the carboxylic group in the isomeric hydroxybenzoate (HB) anions is known to have a large impact on transport properties of this species. It also influences crucially the self-organisation of cationic surfactants. In this article a systematic investigation of aqueous solutions of the ortho, meta, and para isomers of the HB anion is presented. Molecular dynamics simulations of all three HB isomers were conducted for two different concentrations at 298.15 K and using two separate water models. From the resulting trajectories we calculated the self-diffusion coefficient of each isomer. According to the calculated self-diffusion coefficients, isomers were ranked in the order o-HB > m-HB > p-HB at both concentrations for both the used SPC and SPC/E water models, which agrees very well with the experiment. The structural analysis revealed that at lower concentration, where the tendency for dimerisation or cluster formation is low, hydrogen bonding with water determines the mobility of the HB anion. o-HB forms the least hydrogen bonds and is therefore the most mobile, and p-HB, which forms the most hydrogen bonds with water, is the least mobile isomer. At higher concentration the formation of clusters also needs to be considered. The ortho isomer predominantly forms dimers with 2 hydrogen bonds per dimer between one OH and one carboxylate group of each anion. m-HB mostly forms clusters of sizes around 5 and p-HB forms clusters of sizes even larger than 10, which can be either rings or chains.

11.
Beilstein J Nanotechnol ; 5: 973-82, 2014.
Article in English | MEDLINE | ID: mdl-25161833

ABSTRACT

We report first results on double layer effects on proton discharge reactions from aqueous solutions to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include specifically adsorbed sodium cations and chloride anions. For each of four studied systems 800-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred. The results show significant influences of ion presence on the average behavior of protons prior to the discharge event. Rationalization of the observed behavior cannot be based solely on the electrochemical potential (or surface charge) but needs to resort to the molecular details of the double layer structure.

12.
Angew Chem Int Ed Engl ; 52(30): 7883-5, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23788512

ABSTRACT

A perfect match: Silver deposition is one of the fastest electrochemical reactions, even though the Ag(+) ion loses more than 5 eV solvation energy in the process. This phenomenon, an example of the enigma of metal deposition, was investigated by a combination of MD simulations, DFT, and specially developed theory. At the surface, the Ag(+) ion experiences a strong interaction with the sp band of silver, which catalyzes the reaction.

13.
Phys Chem Chem Phys ; 14(41): 14299-305, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23000918

ABSTRACT

Zero point energy and classical thermal sampling techniques are compared in semi-classical photodynamics of the pentadienyliminium cation, a minimal retinal model. Using both methods, the effects of vibrational hydrogen-out-of-plane (HOOP) excitations on the photo-reactivity are probed at the ab initio CASSCF level. With 2376 individual trajectories the calculations reveal a clear picture of the relation between the excited state reaction coordinate, surface crossing and product generation. The productivity is strongly coupled with hydrogen torsion and the number of hopping attempts before the molecule finally decays.

14.
J Phys Condens Matter ; 23(23): 234104, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21613694

ABSTRACT

It is well established that proton conductivity in fuel cell membrane materials such as Nafion decreases strongly with decreasing water content. Proton transport in almost dry membranes is thought to proceed through narrow channels. In the present work we investigate proton structure and dynamics in two narrow cylindrical pores, which differ by their radius and the spacing of SO(3)H groups inside the channel. Pores are modelled through eight CF(3)CF(3) and four CF(3)SO(3)H entities in a helical arrangement. The water content λ (the ratio between the number of water molecules and the number of sulfonic acid groups) in the pores varies between 2.5 and 4.5. We observe a transition from the undissociated acid at very low λ through more or less localized H(3)O(+) entities to more delocalized H(5)O(2)(+) entities for the investigated range of λ. In the narrower pore, where S-S distances vary in a more favourable range (between 6 and 8.5 Å) than in the wider pore, we find that the molecular mobility is significantly higher, even at a rather high density of water molecules inside the pore.

15.
J Phys Condens Matter ; 22(17): 175001, 2010 May 05.
Article in English | MEDLINE | ID: mdl-21393659

ABSTRACT

A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

SELECTION OF CITATIONS
SEARCH DETAIL
...