Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 93(8): 081101, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050050

ABSTRACT

Giant negative ion sources for neutral beam injectors deliver huge negative ion currents, thanks to their multi-beamlet configuration. As the single-beamlet optics defines the transmission losses along the beamline, the extraction of a similar current for all beamlets is extremely desirable, in order to facilitate the beam source operation (i.e., around perveance match). This Review investigates the correlation between the vertical profile of beam intensity and the vertical profiles of plasma properties at the extraction region of the source, focusing on the influence of increasing cesium injection. Only by the combined use of all available source diagnostics, described in this Review, can beam features on the scale of the non-uniformities be investigated with a sufficient space resolution. At RF power of 50 kW/driver, with intermediate bias currents and a filter field of 2.4 mT, it is found that the central part of the four vertical beam segments exhibits comparable plasma density and beamlet currents; at the edges of the central segments, both the beam and electron density appear to decrease (probably maintaining fixed electron-to-ion ratio); at the bottom of the source, an increase of cesium injection can compensate for the vertical drifts that cause a much higher presence of electrons and a lower amount of negative ions.

2.
Rev Sci Instrum ; 88(3): 035106, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372420

ABSTRACT

This paper describes a new filamentary probe recently introduced on the COMPASS tokamak. It allows the measurement of electrostatic and magnetic properties of the filaments and their changes in dependence on distance from the separatrix in the region between a divertor and midplane. The probe head is mounted on a manipulator moving the probe radially on a shot-to-shot basis. This configuration is suitable for the long term statistical measurement of the plasma filaments and the measurement of their evolution during their propagation from the separatrix to the wall. The basics of the filamentary probe construction, the evolution of the plasma parameters, and first conditional averages of the plasma filaments in the scrape-off layer of the COMPASS tokamak during the L-mode regime are presented.

3.
Rev Sci Instrum ; 87(11): 11D417, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910334

ABSTRACT

Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

4.
Rev Sci Instrum ; 87(2): 02B931, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932103

ABSTRACT

Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

5.
Rev Sci Instrum ; 85(11): 11D832, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430245

ABSTRACT

A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

6.
Rev Sci Instrum ; 85(2): 02A715, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593449

ABSTRACT

A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

7.
Phys Rev Lett ; 110(5): 055002, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23414025

ABSTRACT

Experimental evidences of short wavelength electromagnetic modes are found in the reversed-field-pinch configuration device RFX-mod by means of in-vessel magnetic probes. The modes are revealed during the helical states of the plasma. Their amplitude is well correlated to the electron temperature gradient strength in the core. On the basis of linear gyrokinetic calculations we interpret these instabilities as microtearing modes.

8.
Rev Sci Instrum ; 83(2): 02B103, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380260

ABSTRACT

The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H(-)∕D(-) production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

9.
Phys Rev Lett ; 106(24): 245001, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21770576

ABSTRACT

In simple magnetized toroidal plasmas, field-aligned blobs originate from ideal interchange waves and propagate radially outward under the effect of ∇B and curvature induced E×B drifts. We report on the first experimental two-dimensional measurements of the field-aligned current associated with blobs, whose ends terminate on a conducting limiter. A dipolar structure of the current density is measured, which originates from ∇B and curvature induced polarization of the blob and is consistent with sheath boundary conditions. The dipole is strongly asymmetric due to the nonlinear dependence of the current density at the sheath edge upon the floating potential. Furthermore, we directly demonstrate the existence of two regimes, in which parallel currents to the sheath do or do not significantly damp charge separation and thus blob radial velocity.

10.
Phys Rev Lett ; 102(16): 165001, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518717

ABSTRACT

Turbulent structures detected in the edge plasma of fusion devices, often described as blobs, are generally believed to be responsible for confinement degradation. Recent experimental evidence and theories have suggested their filamentary electromagnetic nature. In this Letter the first direct experimental measurements of the parallel current density associated with turbulent structures in a fusion experiment are reported. The electromagnetic nature of structures is clearly shown by identifying the current filaments with a vortexlike velocity pattern and the associated pressure perturbation.

11.
Phys Rev Lett ; 97(7): 075001, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-17026237

ABSTRACT

Stable operation with control on magnetohydrodynamic modes has been obtained in the modified reversed field experiment employing a set of 192 feedback controlled saddle coils. Improvements of plasma temperature, confinement (twofold), and pulse length (threefold) and, as a consequence of the magnetic fluctuation reduction, strong mitigation of plasma-wall interaction and mode locking are reported.

12.
Phys Rev Lett ; 94(13): 135001, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15903999

ABSTRACT

The momentum balance has been applied to the ExB flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the ExB flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge. Balancing the sheared flow driving and damping terms, the plasma viscosity is found anomalous and consistent with the diffusivity due to electrostatic turbulence.

13.
Phys Rev Lett ; 93(21): 215003, 2004 Nov 19.
Article in English | MEDLINE | ID: mdl-15601022

ABSTRACT

Coherent structures identified in two reversed field pinch experiments are interpreted as a dynamic balance of dipolar and monopolar vortices growing and evolving under the effect of the ExB flow shear. For the first time their contribution to the anomalous transport has been estimated in fusion related plasmas, showing that they can account for up to 50% of the total plasma diffusivity. The experimental findings indicate that the diffusion coefficient associated with the coherent structures depends on the relative population of the two types of vortices and is minimum when the two populations are equal. An interpretative model is proposed to explain this feature.

14.
Phys Rev Lett ; 87(4): 045001, 2001 Jul 23.
Article in English | MEDLINE | ID: mdl-11461623

ABSTRACT

A statistical analysis of the anomalous particle flux in the edge region of the RFX experiment has revealed that laminar times between bursts, which account for more than 50% of the losses, have a power law distribution and that flux fluctuations are not self-similar. These properties are found in contrast with a wide class of self-organized-criticality models so that it is concluded that there is no experimental evidence of avalanchelike process occurrence in the plasma of RFX.

15.
Phys Rev Lett ; 86(14): 3032-5, 2001 Apr 02.
Article in English | MEDLINE | ID: mdl-11290100

ABSTRACT

In order to test the self-organized criticality (SOC) paradigm in transport processes, a novel technique has been applied for the first time to plasmas confined in reversed field pinch configuration. This technique consists of an analysis of the probability distribution function of the times between bursts in density fluctuations measured by microwave reflectometry and electrostatic probes. The same analysis has also been applied to intermittent events sorted out from the Gaussian background. In both cases, the experimental results disagree with the predictions for a SOC system.

SELECTION OF CITATIONS
SEARCH DETAIL
...