Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 37(6): 1298-1310, 2023 06.
Article in English | MEDLINE | ID: mdl-37106163

ABSTRACT

Although the landscape for treating acute myeloid leukemia (AML) patients has changed substantially in recent years, the majority of patients will eventually relapse and succumb to their disease. Allogeneic stem cell transplantation provides the best anti-AML treatment strategy, but is only suitable in a minority of patients. In contrast to B-cell neoplasias, chimeric antigen receptor (CAR) T-cell therapy in AML has encountered challenges in target antigen heterogeneity, safety, and T-cell dysfunction. We established a Fab-based adapter CAR (AdCAR) T-cell platform with flexibility of targeting and control of AdCAR T-cell activation. Utilizing AML cell lines and a long-term culture assay for primary AML cells, we were able to demonstrate AML-specific cytotoxicity using anti-CD33, anti-CD123, and anti-CLL1 adapter molecules in vitro and in vivo. Notably, we show for the first time the feasibility of sequential application of adapter molecules of different specificity in primary AML co-cultures. Importantly, using the AML platform, we were able to demonstrate that chronic T-cell stimulation and exhaustion can be counteracted through introduction of treatment-free intervals. As T-cell exhaustion and target antigen heterogeneity are well-known causes of resistance, the AdCAR platform might offer effective strategies to ameliorate these limitations.


Subject(s)
Leukemia, Myeloid, Acute , T-Cell Exhaustion , Humans , Cell Line, Tumor , Leukemia, Myeloid, Acute/metabolism , Immunotherapy, Adoptive , T-Lymphocytes
2.
J Hum Evol ; 51(2): 128-33, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16630647

ABSTRACT

Several stable carbon isotopic studies have shown that South African australopiths consumed significant quantities of C(4) resources (tropical grasses, sedges, or animals that eat those foods), but relatively little is known about the consumption of such resources by chimpanzees. Here, we present stable carbon isotopic data for 36 chimpanzee hair samples from Fongoli, one of the driest and most open areas inhabited by chimpanzees. These data suggest that the Fongoli chimpanzees consume little in the way of C(4) vegetation or animals that eat such vegetation, even though these resources are locally abundant and preferred fruits are more widely scattered than at most chimpanzee study sites. The homogeneity of the Fongoli results is especially striking and recalls the narrow isotopic distribution of stenotopic savanna mammals. This is in stark contrast to what has been observed for australopiths, which had highly variable diets and consumed about 35% C(4) vegetation on average. Carbon isotope data for modern and fossil Papio depict a dietarily variable genus with a tendency to consume C(4) vegetation. This trophic flexibility, or willingness to consume C(4) savanna resources, may make Papio a more profitable ecological analog for australopiths than chimpanzees.


Subject(s)
Diet , Pan troglodytes , Animals , Carbon Isotopes/analysis , Cyperaceae , Ecosystem , Hair/chemistry , Poaceae , Senegal
3.
Rapid Commun Mass Spectrom ; 20(9): 1395-9, 2006.
Article in English | MEDLINE | ID: mdl-16572383

ABSTRACT

Stable carbon isotope analysis of animal liver and muscle has become a widespread tool for investigating dietary ecology. Nonetheless, stable carbon isotope turnover of these tissues has not been studied in large mammals except with isotopically labelled tracer methodologies, which do not produce carbon half-lives analogous to those derived from naturalistic diet-switch experiments. To address this gap, we studied turnover of carbon isotopes in the liver, muscle, and breath CO2 of alpacas (Lama pacos) by switching them from a C3 grass diet to an isonitrogenous C4 grass diet. Breath samples as well as liver and muscle biopsies were collected and analyzed for up to 72 days to monitor the incorporation of the C4-derived carbon. The data suggest half-lives of 2.8, 37.3, and 178.7 days for alpaca breath CO2, liver, and muscle, respectively. Alpaca liver and muscle carbon half-lives are about 6 times longer than those of gerbils, which is about what would be expected given their size. In contrast, breath CO2 turnover does not scale readily with body mass. We also note that the breath CO2 and liver data are better described using a multiple-pool exponential decay model than a single-pool model.


Subject(s)
Camelids, New World/metabolism , Carbon Dioxide/metabolism , Liver/metabolism , Muscles/metabolism , Aging/metabolism , Animals , Carbon Isotopes , Chromatography, Gas , Diet , Half-Life , Male , Mass Spectrometry , Poaceae
4.
Oecologia ; 139(1): 11-22, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14730442

ABSTRACT

Temporal stable isotope records derived from animal tissues are increasingly studied to determine dietary and climatic histories. Despite this, the turnover times governing rates of isotope equilibration in specific tissues following a dietary isotope change are poorly known. The dietary isotope changes recorded in the hair and blood bicarbonate of two adult horses in this study are found to be successfully described by a model having three exponential isotope pools. For horse tail hair, the carbon isotope response observed following a dietary change from a C3 to a C4 grass was consistent with a pool having a very fast turnover rate ( t1/2 approximately 0.5 days) that made up approximately 41% of the isotope signal, a pool with an intermediate turnover rate ( t1/2 approximately 4 days) that comprised approximately 15% of the isotope signal, and a pool with very slow turnover rate ( t1/2 approximately 140 days) that made up approximately 44% of the total isotope signal. The carbon isotope signature of horse blood bicarbonate, in contrast, had a different isotopic composition, with approximately 67% of the isotope signal coming from a fast turnover pool ( t1/2 0.2 days), approximately 17% from a pool with an intermediate turnover rate ( t1/2 approximately 3 days) and approximately 16% from a pool with a slow turnover rate ( t1/2 approximately 50 days). The constituent isotope pools probably correspond to one exogenous and two endogenous sources. The exogenous source equates to our fast turnover pool, and the pools with intermediate and slow turnover rates are thought to derive from the turnover of metabolically active tissues and relatively inactive tissues within the body, respectively. It seems that a greater proportion of the amino acids available for hair synthesis come from endogenous sources compared to the compounds undergoing cellular catabolism in the body. Consequently, the isotope composition of blood bicarbonate appears to be much more responsive to dietary isotope changes, whereas the amino acids in the blood exhibit considerable isotopic inertia.


Subject(s)
Animal Feed , Carbon Dioxide/analysis , Carbon/metabolism , Hair/chemistry , Horses/physiology , Models, Theoretical , Amino Acids/blood , Animals , Breath Tests , Carbon Isotopes/analysis , Female , Male
5.
Calcif Tissue Int ; 74(2): 162-9, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14668967

ABSTRACT

The Cynodontia are considered to be particularly significant as their remains document the reptile-to-mammal transition during the Permian and Triassic periods. Studies examining cynodont morphology and anatomy have shown that these animals acquired increasingly mammal-like characteristics during their evolution. In this study, we use Fourier Transform Infrared spectroscopy to assess the enamel structure of several Triassic cynodonts. Extant Crocodylus niloticus and Varanus enamel spectra as well as published extant and fossil mammalian data were used as comparisons. The profiles of the cynodont spectra resemble biological apatite, in spite of their great age. The ratio of structural carbonate to phosphate in these cynodonts is significantly higher than in the extant and fossil mammals, but very similar to the extant reptiles. We suggest that the enamel apatite structure of these cynodonts was more similar to the reptilian rather than the mammalian pattern.


Subject(s)
Dental Enamel/chemistry , Paleodontology , Spectroscopy, Fourier Transform Infrared/methods , Animals , Fossils , History, Ancient
6.
J Hum Evol ; 36(6): 705-18, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10330334

ABSTRACT

The relationship between environmental change and hominin evolution remains obscure. For the most part, this stems from the difficulty of reconstructing ancient hominin habitats. Bovids are among the most frequently utilized paleoenvironmental indicators, but little is known about the habitat preferences of extinct taxa. It is generally assumed that fossil bovids both ate the same things and occupied the same habitats as their closest extant relatives. We test the first part of this assumption by reconstructing the diets of seven bovids from Makapansgat Limeworks, South Africa. Since diet and habitat are linked, these reconstructions have implications for our understanding of fossil bovid habitat tolerances. Ecomorphological and stable carbon isotope analyses are employed, allowing us to take advantage of the strengths and overcome the weaknesses of both. In most cases, fossil bovids did have similar diets to their extant relatives, and probably occupied similar habitats. Gazella vanhoepeni and Aepyceros sp., however, were almost exclusive browsers, and not mixed feeders like their living counterparts.


Subject(s)
Diet , Ecosystem , Environment , Ruminants , Animals , Biological Evolution , Feeding Behavior , Paleontology , Poaceae , Ruminants/anatomy & histology , Skull/anatomy & histology , South Africa
7.
Science ; 283(5400): 368-70, 1999 Jan 15.
Article in English | MEDLINE | ID: mdl-9888848

ABSTRACT

Current consensus holds that the 3-million-year-old hominid Australopithecus africanus subsisted on fruits and leaves, much as the modern chimpanzee does. Stable carbon isotope analysis of A. africanus from Makapansgat Limeworks, South Africa, demonstrates that this early hominid ate not only fruits and leaves but also large quantities of carbon-13-enriched foods such as grasses and sedges or animals that ate these plants, or both. The results suggest that early hominids regularly exploited relatively open environments such as woodlands or grasslands for food. They may also suggest that hominids consumed high-quality animal foods before the development of stone tools and the origin of the genus Homo.


Subject(s)
Carbon Isotopes/analysis , Dental Enamel/chemistry , Diet/history , Hominidae , Paleodontology , Analysis of Variance , Animals , History, Ancient , Humans , Meat/history , Plants, Edible
SELECTION OF CITATIONS
SEARCH DETAIL
...