Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(5): e0283988, 2023.
Article in English | MEDLINE | ID: mdl-37155666

ABSTRACT

OBJECTIVES: (1) Characterize the initial clinical characteristics and long-term outcomes of smallpox vaccine-associated hypersensitivity myocarditis and pericarditis (MP) in United States service members. (2) Describe the process of case identification and adjudication using the 2003 CDC nationally defined myocarditis/pericarditis epidemiologic case definitions to include consideration of case-specific diversity and evolving evidence. BACKGROUND: Between 2002 and 2016, 2.546 million service members received a smallpox Vaccinia vaccine. Acute MP is associated with vaccinia, but the long-term outcomes have not been studied. METHODS: Records of vaccinia-associated MP reported to the Vaccine Adverse Event Reporting System by vaccination date were adjudicated using the 2003 MP epidemiologic case definitions for inclusion in a retrospective observational cohort study. Descriptive statistics of clinical characteristics, presentation, cardiac complications, and time course of clinical and cardiac recovery were calculated with comparisons by gender, diagnosis and time to recovery. RESULTS: Out of over 5000 adverse event reports, 348 MP cases who survived the acute illness, including 276 myocarditis (99.6% probable/confirmed) and 72 pericarditis (29.2% probable/confirmed), were adjudicated for inclusion in the long-term follow-up. Demographics included a median age of 24 years (IQR 21,30) and male predominance (96%). Compared to background military population, the myocarditis and pericarditis cohort had a higher percentage of white males by 8.2% (95% CI: 5.6, 10.0) and age <40 years by 4.2% (95% CI: 1.7,5.8). Long-term follow-up documented full recovery in 267/306 (87.3%) with 74.9% recovered in less than a year (median ~3 months). Among patients with myocarditis, the percentage who had a delayed time to recovery at time of last follow-up was 12.8% (95% CI: 2.1,24.7) higher in those with an acute left ventricular ejection fraction (EF) of ≤50% and 13.5% (95% CI: 2.4,25.7) higher in those with hypokinesis. Patient complications included 6 ventricular arrhythmias (2 received implanted defibrillators) and 14 with atrial arrhythmias (2 received radiofrequency ablation). Three of 6 patients (50%) diagnosed with cardiomyopathy had clinical recovery at their last follow-up date. CONCLUSIONS: Hypersensitivity myocarditis/pericarditis following the smallpox vaccine is associated with full clinical and functional ventricular recovery in over 87% of cases (74.9% <1 year). A minority of MP cases experienced prolonged or incomplete recovery beyond 1 year.


Subject(s)
Military Health Services , Myocarditis , Pericarditis , Smallpox Vaccine , Smallpox , Vaccinia , Humans , Male , United States , Adult , Female , Smallpox Vaccine/adverse effects , Myocarditis/epidemiology , Myocarditis/etiology , Myocarditis/diagnosis , Vaccinia/prevention & control , Retrospective Studies , Stroke Volume , Ventricular Function, Left , Vaccination , Pericarditis/epidemiology , Pericarditis/etiology , Pericarditis/diagnosis , Smallpox/prevention & control , Vaccinia virus
2.
Clin Vaccine Immunol ; 24(11)2017 Nov.
Article in English | MEDLINE | ID: mdl-28877928

ABSTRACT

Edema toxin (ET), composed of edema factor (EF) and protective antigen (PA), is a virulence factor of Bacillus anthracis that alters host immune cell function and contributes to anthrax disease. Anthrax vaccine precipitated (AVP) contains low but detectable levels of EF and can elicit EF-specific antibodies in human recipients of AVP. Active and passive vaccination of mice with EF can contribute to protection from challenge with Bacillus anthracis spores or ET. This study compared humoral responses to ET in recipients of AVP (n = 33) versus anthrax vaccine adsorbed (AVA; n = 66), matched for number of vaccinations and time postvaccination, and further determined whether EF antibodies elicited by AVP contribute to ET neutralization. AVP induced higher incidence (77.8%) and titer (229.8 ± 58.6) of EF antibodies than AVA (4.2% and 7.8 ± 8.3, respectively), reflecting the reported low but detectable presence of EF in AVP. In contrast, PA IgG levels and ET neutralization measured using a luciferase-based cyclic AMP reporter assay were robust and did not differ between the two vaccine groups. Multiple regression analysis failed to detect an independent contribution of EF antibodies to ET neutralization in AVP recipients; however, EF antibodies purified from AVP sera neutralized ET. Serum samples from at least half of EF IgG-positive AVP recipients bound to nine decapeptides located in EF domains II and III. Although PA antibodies are primarily responsible for ET neutralization in recipients of AVP, increased amounts of an EF component should be investigated for the capacity to enhance next-generation, PA-based vaccines.


Subject(s)
Anthrax Vaccines/immunology , Anthrax/prevention & control , Antibodies, Bacterial/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antigens, Bacterial/immunology , Bacillus anthracis/immunology , Bacterial Toxins/immunology , Adult , Animals , Anthrax/immunology , Anthrax Vaccines/chemistry , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Mice , Middle Aged , Neutralization Tests , Young Adult
3.
Vaccine ; 35(9): 1238-1245, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28169076

ABSTRACT

An Adverse Event Following Immunization (AEFI) is an adverse reaction to a vaccination that goes above and beyond the usual side effects associated with vaccinations. One serious AEFI related to the smallpox vaccine is myopericarditis. Metabolomics involves the study of the low molecular weight metabolite profile of cells, tissues, and biological fluids, and provides a functional readout of the phenotype. Metabolomics may help identify a particular metabolic signature in serum of subjects who are predisposed to developing AEFIs. The goal of this study was to identify metabolic markers that may predict the development of adverse events following smallpox vaccination. Serum samples were collected from military personnel prior to and following receipt of smallpox vaccine. The study population included five subjects who were clinically diagnosed with myopericarditis, 30 subjects with asymptomatic elevation of troponins, and 31 subjects with systemic symptoms following immunization, and 34 subjects with no AEFI, serving as controls. Two-hundred pre- and post-smallpox vaccination sera were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance (NMR) spectroscopy. Baseline (pre-) and post-vaccination samples from individuals who experienced clinically verified myocarditis or asymptomatic elevation of troponins were more metabolically distinguishable pre- and post-vaccination compared to individuals who only experienced systemic symptoms, or controls. Metabolomics profiles pre- and post-receipt of vaccine differed substantially when an AEFI resulted. This study is the first to describe pre- and post-vaccination metabolic profiles of subjects who developed an adverse event following immunization. The study demonstrates the promise of metabolites for determining mechanisms associated with subjects who develop AEFI and the potential to develop predictive biomarkers.


Subject(s)
Biomarkers/blood , Magnetic Resonance Spectroscopy/methods , Metabolomics , Vaccines/adverse effects , Adult , Adverse Drug Reaction Reporting Systems , Asymptomatic Diseases , Drug-Related Side Effects and Adverse Reactions/blood , Female , Humans , Male , Myocarditis/blood , Myocarditis/diagnosis , Pericarditis/blood , Pericarditis/diagnosis , Pilot Projects , Smallpox Vaccine/administration & dosage , Smallpox Vaccine/adverse effects , Troponin/blood , Vaccination/adverse effects
4.
Clin Vaccine Immunol ; 23(8): 664-71, 2016 08.
Article in English | MEDLINE | ID: mdl-27280620

ABSTRACT

Although the U.S. National Academy of Sciences concluded that anthrax vaccine adsorbed (AVA) has an adverse event (AE) profile similar to those of other adult vaccines, 30 to 70% of queried AVA vaccinees report AEs. AEs appear to be correlated with certain demographic factors, but the underlying immunologic pathways are poorly understood. We evaluated a cohort of 2,421 AVA vaccinees and found 153 (6.3%) reported an AE. Females were more likely to experience AEs (odds ratio [OR] = 6.0 [95% confidence interval {CI} = 4.2 to 8.7]; P < 0.0001). Individuals 18 to 29 years of age were less likely to report an AE than individuals aged 30 years or older (OR = 0.31 [95% CI = 0.22 to 0.43]; P < 0.0001). No significant effects were observed for African, European, Hispanic, American Indian, or Asian ancestry after correcting for age and sex. Additionally, 103 AEs were large local reactions (LLRs), whereas 53 AEs were systemic reactions (SRs). In a subset of our cohort vaccinated 2 to 12 months prior to plasma sample collection (n = 75), individuals with LLRs (n = 33) had higher protective-antigen (PA)-specific IgE levels than matched, unaffected vaccinated individuals (n = 50; P < 0.01). Anti-PA IgE was not associated with total plasma IgE, hepatitis B-specific IgE, or anti-PA IgG in individuals who reported an AE or in matched, unaffected AVA-vaccinated individuals. IP-10 was also elevated in sera of individuals who developed LLRs (P < 0.05). Individuals reporting SRs had higher levels of systemic inflammation as measured from C-reactive protein (P < 0.01). Thus, LLRs and SRs are mediated by distinct pathways. LLRs are associated with a vaccine-specific IgE response and IP-10, whereas SRs demonstrate increased systemic inflammation without a skewed cytokine profile.


Subject(s)
Anthrax Vaccines/adverse effects , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , C-Reactive Protein/analysis , Chemokine CXCL10/blood , Drug-Related Side Effects and Adverse Reactions/pathology , Immunoglobulin E/blood , Adolescent , Adult , Age Factors , Anthrax Vaccines/administration & dosage , Drug-Related Side Effects and Adverse Reactions/epidemiology , Ethnicity , Female , Humans , Male , Middle Aged , Sex Factors , United States/epidemiology , Young Adult
5.
Vaccine ; 32(43): 5624-31, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25140930

ABSTRACT

BACKGROUND: Roughly half of U.S. adults do not receive recommended booster vaccinations, but protective antibody levels are rarely measured in adults. Demographic factors, vaccination history, and responses to other vaccinations could help identify at-risk individuals. We sought to characterize rates of seroconversion and determine associations of humoral responses to multiple vaccinations in healthy adults. METHODS: Humoral responses toward measles, mumps, tetanus toxoid, pertussis, hepatitis B surface antigen, and anthrax protective antigen were measured by ELISA in post-immunization samples from 1465 healthy U.S. military members. We examined the effects of demographic and clinical factors on immunization responses, as well as assessed correlations between vaccination responses. RESULTS: Subsets of boosted adults did not have seroprotective levels of antibodies toward measles (10.4%), mumps (9.4%), pertussis (4.7%), hepatitis B (8.6%) or protective antigen (14.4%) detected. Half-lives of antibody responses were generally long (>30 years). Measles and mumps antibody levels were correlated (r=0.31, p<0.001), but not associated with select demographic features or vaccination history. Measles and mumps antibody levels also correlated with tetanus antibody response (r=0.11, p<0.001). CONCLUSIONS: Vaccination responses are predominantly robust and vaccine specific. However, a small but significant portion of the vaccinated adult population may not have quantitative seroprotective antibody to common vaccine-preventable infections.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Viral/immunology , Antibody Formation , Immunization, Secondary , Adult , Anthrax/prevention & control , Antibodies, Bacterial/blood , Antibodies, Viral/blood , Female , Hepatitis B/prevention & control , Humans , Male , Measles/prevention & control , Military Personnel , Mumps/prevention & control , Tetanus/prevention & control , Vaccination/statistics & numerical data , Whooping Cough/prevention & control , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...