Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(46): e2307275120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37931094

ABSTRACT

Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.


Subject(s)
Locus Coeruleus , Optogenetics , Rats , Animals , Locus Coeruleus/physiology , Hippocampus/physiology , Neurons/physiology , Norepinephrine/pharmacology , Long-Term Potentiation/physiology
2.
Hippocampus ; 33(6): 769-786, 2023 06.
Article in English | MEDLINE | ID: mdl-36798045

ABSTRACT

The hippocampus is a critical component of a mammalian spatial navigation system, with the firing sequences of hippocampal place cells during sleep or immobility constituting a "replay" of an animal's past trajectories. A novel spatial navigation task recently revealed that such "replay" sequences of place fields can also prospectively map onto imminent new paths to a goal that occupies a stable location during each session. It was hypothesized that such "prospective replay" sequences may play a causal role in goal-directed navigation. In the present study, we query this putative causal role in finding only minimal effects of muscimol-induced inactivation of the dorsal and intermediate hippocampus on the same spatial navigation task. The concentration of muscimol used demonstrably inhibited hippocampal cell firing in vivo and caused a severe deficit in a hippocampal-dependent "episodic-like" spatial memory task in a watermaze. These findings call into question whether "prospective replay" of an imminent and direct path is actually necessary for its execution in certain navigational tasks.


Subject(s)
Goals , Spatial Navigation , Animals , Muscimol/pharmacology , Prospective Studies , Spatial Navigation/physiology , Hippocampus/physiology , Mammals
3.
Proc Natl Acad Sci U S A ; 119(44): e2212152119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279456

ABSTRACT

A challenge in spatial memory is understanding how place cell firing contributes to decision-making in navigation. A spatial recency task was created in which freely moving rats first became familiar with a spatial context over several days and thereafter were required to encode and then selectively recall one of three specific locations within it that was chosen to be rewarded that day. Calcium imaging was used to record from more than 1,000 cells in area CA1 of the hippocampus of five rats during the exploration, sample, and choice phases of the daily task. The key finding was that neural activity in the startbox rose steadily in the short period prior to entry to the arena and that this selective population cell firing was predictive of the daily changing goal on correct trials but not on trials in which the animals made errors. Single-cell and population activity measures converged on the idea that prospective coding of neural activity can be involved in navigational decision-making.


Subject(s)
Place Cells , Spatial Navigation , Rats , Animals , Calcium , Prospective Studies , Place Cells/physiology , Neurons/physiology , Hippocampus/physiology , Spatial Navigation/physiology
4.
Proc Natl Acad Sci U S A ; 119(31): e2107942119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881809

ABSTRACT

The study of social dominance interactions between animals offers a window onto the decision-making involved in establishing dominance hierarchies and an opportunity to examine changes in social behavior observed in certain neurogenetic disorders. Competitive social interactions, such as in the widely used tube test, reflect this decision-making. Previous studies have focused on the different patterns of behavior seen in the dominant and submissive animal, neural correlates of effortful behavior believed to mediate the outcome of such encounters, and interbrain correlations of neural activity. Using a rigorous mutual information criterion, we now report that neural responses recorded with endoscopic calcium imaging in the prelimbic zone of the medial prefrontal cortex show unique correlations to specific dominance-related behaviors. Interanimal analyses revealed cell/behavior correlations that are primarily with an animal's own behavior or with the other animal's behavior, or the coincident behavior of both animals (such as pushing by one and resisting by the other). The comparison of unique and coincident cells helps to disentangle cell firing that reflects an animal's own or the other's specific behavior from situations reflecting conjoint action. These correlates point to a more cognitive rather than a solely behavioral dimension of social interactions that needs to be considered in the design of neurobiological studies of social behavior. These could prove useful in studies of disorders affecting social recognition and social engagement, and the treatment of disorders of social interaction.


Subject(s)
Calcium , Prefrontal Cortex , Social Dominance , Social Interaction , Animals , Calcium/metabolism , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology
5.
J Vis Exp ; (180)2022 02 03.
Article in English | MEDLINE | ID: mdl-35188115

ABSTRACT

The event arena provides an optimal platform to investigate learning and memory. The appetitive everyday memory task described in this paper provides a robust protocol for the investigation of episodic and spatial memory in rodents, which specifically fosters allocentric memory representation. Rats are trained to find and dig for food during the encoding phase and, after a time delay, rats are given a choice to find the reward food pellet in the correct location. There are two key elements that promote the use of an allocentric strategy in this protocol: 1) rats start from different start locations within and between sessions, 2) a stable home-base is deployed where rats have to carry their food to eat. By means of these modifications, we effectively encourage the rodents to use allocentric spatial representations to perform the task. In addition, the task provides a good paradigm for within-subject experimental design and allows experimenters to manipulate different conditions to reduce variability. Used in conjunction with behavioral and physiological techniques, the resulting rodent model provides an effective test-bed for future research into memory formation and retention.


Subject(s)
Rodentia , Spatial Memory , Animals , Rats , Reward , Space Perception/physiology , Spatial Memory/physiology
6.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34135006

ABSTRACT

New information is rarely learned in isolation; instead, most of what we experience can be incorporated into or uses previous knowledge networks in some form. Previous knowledge in form of a cognitive map can facilitate knowledge acquisition and will influence how we learn new spatial information. Here, we developed a new spatial navigation task where food locations are learned in a large, gangway maze to test how mice learn a large spatial map over a longer time period-the HexMaze. Analyzing performance across sessions as well as on specific trials, we can show simple memory effects as well as multiple effects of previous knowledge of the map accelerating both online learning and performance increases over offline periods when incorporating new information. We could identify the following three main phases: (1) learning the initial goal location; (2) faster learning after 2 weeks when learning a new goal location; and then (3) the ability to express one-session learning, leading to long-term memory effect after 12 weeks. Importantly, we are the first to show that buildup of a spatial map is dependent on how much time passes, not how often the animal is trained.


Subject(s)
Spatial Navigation , Animals , Maze Learning , Mice
7.
J Neurosci Methods ; 355: 109109, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33705854

ABSTRACT

BACKGROUND: In vivo calcium imaging using a microendoscope is a state-of-the-art technique to study the cellular activity inside the brain of freely moving animals such as mice or rats. A problem that can arise in social behaviour tests in rats, or similar size rodents, is that one animal interferes with or may even damage the miniature endoscopic camera attached to the second animal. NEW METHOD: We outline an inexpensive, lightweight, 3D-printed protector (iHELMET) that surrounds but is not in physical contact with the camera, together with details of its design and construction. RESULTS: Using a simple design, we demonstrate successful protection of the endoscope and recording in a social situation such as the social dominance tube test. COMPARISON WITH EXISTING METHODS: The helmet's 3D-printed dimensions can be readily adjusted to work with various micro-endoscopes, which may be more difficult for the only other system of which we are aware. CONCLUSIONS: In addition to camera protection, features of the design aid camera stability, helping to secure more optimal imaging of calcium transients in specific regions of interest during long recording sessions.


Subject(s)
Cognitive Neuroscience , Animals , Brain/diagnostic imaging , Calcium , Mice , Printing, Three-Dimensional , Rats
8.
SLAS Technol ; 23(4): 374-386, 2018 08.
Article in English | MEDLINE | ID: mdl-29186669

ABSTRACT

We present methods to fabricate high-capacity redox electrodes using thick membrane or fiber casting of conjugated polymer solutions. Unlike common solution casting or printing methods used in current organic electronics, the presented techniques enable production of PEDOT:PSS electrodes with high charge capacity and the capability to operate under applied voltages greater than 100 V without electrochemical overoxidation. The electrodes are shown integrated into several electrokinetic components commonly used in automated bioprocess or bioassay workflows, including electrophoretic DNA separation and extraction, cellular electroporation/lysis, and electroosmotic pumping. Unlike current metal electrodes used in these applications, the high-capacity polymer electrodes are shown to function without electrolysis of solvent (i.e., without production of excess H+, OH-, and H2O2 by-products). In addition, each component fabricated using the electrodes is shown to have superior capabilities compared with those fabricated with common metal electrodes. These innovations in electrokinetics include a low-voltage/high-pressure electroosmotic pump, and a "flow battery" (in which electrochemical discharge is used to generate electroosmotic flow in the absence of an applied potential). The novel electrodes (and electrokinetic demonstrations) enable new applications of organic electronics within the biology, health care, and pharmaceutical fields.


Subject(s)
Cell Fractionation/methods , Electrochemistry/methods , Polystyrenes/chemistry , Thiophenes/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , DNA/analysis , DNA/isolation & purification , Electric Power Supplies , Electrodes , Electrolysis , Electroosmosis , Equipment Design , Microfluidics , Oxidation-Reduction , Pressure , Rheology
9.
Eur J Neurosci ; 46(4): 1937-1953, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28677201

ABSTRACT

The testing of cognitive enhancers could benefit from the development of novel behavioural tasks that display better translational relevance for daily memory and permit the examination of potential targets in a within-subjects manner with less variability. We here outline an optimized spatial 'everyday memory' task. We calibrate it systematically by interrogating certain well-established determinants of memory and consider its potential for revealing novel features of encoding-related gene activation. Rats were trained in an event arena in which food was hidden in sandwells in a different location everyday. They found the food during an initial memory-encoding trial and were then required to remember the location in six alternative choice or probe trials at various time-points later. Training continued daily over a period of 4 months, realizing a stable high level of performance and characterized by delay-dependent forgetting over 24 h. Spaced but not massed access to multiple rewards enhanced the persistence of memory, as did post-encoding administration of the PDE4 inhibitor Rolipram. Quantitative PCR and then genome-wide analysis of gene expression led to a new observation - stronger gene-activation in hippocampus and retrosplenial cortex following spaced than massed training. In a subsidiary study, a separate group of animals replicated aspects of this training profile, going on to show enhanced memory when training was subject to post-encoding environmental novelty. Distinctive features of this protocol include its potential validity as a model of memory encoding used routinely by human subjects everyday, and the possibility of multiple within-subject comparisons to speed up assays of novel compounds.


Subject(s)
Mental Recall/physiology , Nootropic Agents/pharmacology , Reward , Translational Research, Biomedical/methods , Animals , Cerebral Cortex/physiology , Gene Expression Profiling/methods , Habituation, Psychophysiologic/drug effects , Habituation, Psychophysiologic/physiology , Hippocampus/drug effects , Hippocampus/physiology , Male , Memory/drug effects , Memory/physiology , Mental Recall/drug effects , Rats
10.
PLoS Biol ; 15(1): e2000531, 2017 01.
Article in English | MEDLINE | ID: mdl-28085883

ABSTRACT

While hippocampal and cortical mechanisms of memory consolidation have long been studied, their interaction is poorly understood. We sought to investigate potential interactions with respect to trace dominance, strengthening, and interference associated with postencoding novelty or sleep. A learning procedure was scheduled in a watermaze that placed the impact of novelty and sleep in opposition. Distinct behavioural manipulations-context preexposure or interference during memory retrieval-differentially affected trace dominance and trace survival, respectively. Analysis of immediate early gene expression revealed parallel up-regulation in the hippocampus and cortex, sustained in the hippocampus in association with novelty but in the cortex in association with sleep. These findings shed light on dynamically interacting mechanisms mediating the stabilization of hippocampal and neocortical memory traces. Hippocampal memory traces followed by novelty were more dominant by default but liable to interference, whereas sleep engaged a lasting stabilization of cortical traces and consequent trace dominance after preexposure.


Subject(s)
Hippocampus/physiology , Memory Consolidation/physiology , Neocortex/physiology , Yin-Yang , Animals , Male , Maze Learning , Rats , Real-Time Polymerase Chain Reaction
11.
Nature ; 537(7620): 357-362, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27602521

ABSTRACT

The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH+) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH+ neurons project more profusely than ventral tegmental area TH+ neurons to the hippocampus, optogenetic activation of locus coeruleus TH+ neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation. Surprisingly, two effects of locus coeruleus TH+ photoactivation are sensitive to hippocampal D1/D5 receptor blockade and resistant to adrenoceptor blockade: memory enhancement and long-lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, locus coeruleus TH+ neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in the hippocampus.


Subject(s)
Dopamine/metabolism , Locus Coeruleus/physiology , Memory Consolidation/physiology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/physiology , In Vitro Techniques , Locus Coeruleus/cytology , Locus Coeruleus/radiation effects , Male , Memory Consolidation/drug effects , Memory Consolidation/radiation effects , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/radiation effects , Optogenetics , Receptors, Adrenergic/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D5/antagonists & inhibitors , Receptors, Dopamine D5/metabolism , Synaptic Transmission/drug effects , Ventral Tegmental Area/cytology , Ventral Tegmental Area/physiology
12.
PLoS One ; 7(7): e40182, 2012.
Article in English | MEDLINE | ID: mdl-22768340

ABSTRACT

Calcium, a ubiquitous intracellular signaling molecule, controls a diverse array of cellular processes. Consequently, cells have developed strategies to modulate the shape of calcium signals in space and time. The force generating machinery in muscle is regulated by the influx and efflux of calcium ions into the muscle cytoplasm. In order for efficient and effective muscle contraction to occur, calcium needs to be rapidly, accurately and reliably regulated. The mechanisms underlying this highly regulated process are not fully understood. Here, we show that the Caenorhabditis elegans homolog of the giant muscle protein obscurin, UNC-89, is required for normal muscle cell architecture. The large immunoglobulin domain-rich isoforms of UNC-89 are critical for sarcomere and sarcoplasmic reticulum organization. Furthermore, we have found evidence that this structural organization is crucial for excitation-contraction coupling in the body wall muscle, through the coordination of calcium signaling. Thus, our data implicates UNC-89 in maintaining muscle cell architecture and that this precise organization is essential for optimal calcium mobilization and efficient and effective muscle contraction.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Muscle Cells/metabolism , Muscle Contraction/physiology , Muscle Proteins/metabolism , Muscles/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Calcium/metabolism , Muscle Cells/cytology , Muscle Proteins/genetics , Muscles/cytology , Sarcoplasmic Reticulum/genetics , Sarcoplasmic Reticulum/metabolism
13.
J Neurosci ; 30(14): 4981-9, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20371818

ABSTRACT

Weakly tetanized synapses in area CA1 of the hippocampus that ordinarily display long-term potentiation lasting approximately 3 h (called early-LTP) will maintain a longer-lasting change in efficacy (late-LTP) if the weak tetanization occurs shortly before or after strong tetanization of an independent, but convergent, set of synapses in CA1. The synaptic tagging and capture hypothesis explains this heterosynaptic influence on persistence in terms of a distinction between local mechanisms of synaptic tagging and cell-wide mechanisms responsible for the synthesis, distribution, and capture of plasticity-related proteins (PRPs). We now present evidence that distinct CaM kinase (CaMK) pathways serve a dissociable role in these mechanisms. Using a hippocampal brain-slice preparation that permits stable long-term recordings in vitro for >10 h and using hippocampal cultures to validate the differential drug effects on distinct CaMK pathways, we show that tag setting is blocked by the CaMK inhibitor KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) that, at low concentration, is more selective for CaMKII. In contrast, the CaMK kinase inhibitor STO-609 [7H-benzimidazo(2,1-a)benz(de)isoquinoline-7-one-3-carboxylic acid] specifically limits the synthesis and/or availability of PRPs. Analytically powerful three-pathway protocols using sequential strong and weak tetanization in varying orders and test stimulation over long periods of time after LTP induction enable a pharmacological dissociation of these distinct roles of the CaMK pathways in late-LTP and so provide a novel framework for the molecular mechanisms by which synaptic potentiation, and possibly memories, become stabilized.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 1/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Long-Term Potentiation/physiology , Synapses/enzymology , Synaptic Transmission/physiology , Animals , Benzimidazoles/pharmacology , Benzylamines/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 1/biosynthesis , Calcium-Calmodulin-Dependent Protein Kinase Type 1/chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/biosynthesis , Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry , Cells, Cultured , Long-Term Potentiation/drug effects , Male , Naphthalimides/pharmacology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Wistar , Sulfonamides/pharmacology , Synapses/drug effects , Synaptic Transmission/drug effects
14.
Science ; 316(5821): 76-82, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17412951

ABSTRACT

Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative "schema" into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent paired-associate task for rats, the memory of flavor-place associations became persistent over time as a putative neocortical schema gradually developed. New traces, trained for only one trial, then became assimilated and rapidly hippocampal-independent. Schemas also played a causal role in the creation of lasting associative memory representations during one-trial learning. The concept of neocortical schemas may unite psychological accounts of knowledge structures with neurobiological theories of systems memory consolidation.


Subject(s)
Hippocampus/physiology , Memory , Neocortex/physiology , Animals , Association Learning , Cues , Male , Mental Recall , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...